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ABSTRACT 

 Statistical power is important in a meta-analysis study, although few studies have 

examined the performance of simulated power in meta-analysis. The purpose of this 

study is to inform researchers about statistical power estimation on two sample mean 

difference test under different situations: (1) the discrepancy between the analytical 

power and the actual power and (2) the influence of unequal sample size and unbalanced 

design on the power.  Results indicated that there are noticeable discrepancies between 

the estimated power and actual power under certain conditions. In general, unbalanced 

design decreases the statistical power in the meta-analysis. Recommendations are 

provided for researchers who are interested in power of meta-analysis.  

  



www.manaraa.com

v 
 

TABLE OF CONTENTS 

Acknowledgements ............................................................................................................ iii 

Abstract .............................................................................................................................. iv 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................... ix 

CHAPTER 1 Statistical Power ........................................................................................... 1 

Determinants of Statistical Power ................................................................................... 5 

Prospective and Retrospective Power ............................................................................. 8 

History of Statistical Power............................................................................................. 9 

Computation of Statistical Power .................................................................................. 10 

Simulation of Statistical Power ..................................................................................... 16 

CHAPTER 2 Meta-analysis .............................................................................................. 19 

Limitations of Primary Studies and Narrative Review ................................................. 19 

Advantages of Meta-analysis ........................................................................................ 21 

Effect Size in Meta-analysis .......................................................................................... 23 

Analytical Procedures ................................................................................................... 24 

Challenges in Meta-analysis ......................................................................................... 34 

Meta-analysis Application............................................................................................. 35 

Research Questions ....................................................................................................... 37 



www.manaraa.com

vi 
 

CHAPTER 3 Analysis and Simulation of Statistical Power in Meta-analysis ................. 42 

Meta-analysis Practice................................................................................................... 42 

Computation of Power in Meta-analysis ....................................................................... 43 

Simulation of Statistical Power in Meta-analysis ......................................................... 45 

CHAPTER 4 Results......................................................................................................... 54 

Type I Error Control ...................................................................................................... 54 

Discrepancy in Power Estimation ................................................................................. 57 

Influence of Unequal Sample Size and Unbalanced Design on Statistical Power ........ 60 

CHAPTER 5 Conclusion ................................................................................................ 101 

References ....................................................................................................................... 109 

Appendix A R Code ........................................................................................................ 113 

Basic Power Simulation (Chapter 2) ........................................................................... 113 

Meta-analysis Application (Chapter 3) ....................................................................... 113 

Simulation and Analytical Power – Equal Sample Size and Balanced Design .......... 115 

Simulation and Analytical Power – Unequal Sample Size and Balanced Design ...... 121 

Simulated and Analytical Power – Equal Sample Size and Unbalanced Design ........ 128 

Simulated and Analytical Power – Unequal Sample Size and Unbalanced Design ... 134 

Graph Functions .......................................................................................................... 141 



www.manaraa.com

vii 
 

LIST OF TABLES 

Table 1.1 Decision Making in a Hypothesis Test ............................................................. 18 

Table 2.1 Effect Sizes and Sample Sizes of Studies for Mental Rotation Tasks .............. 40 

Table 2.2 Summary Results of Meta-analysis across Methods ........................................ 40 

Table 2.3 Effect Sizes and Sample Sizes of Studies for Pride .......................................... 40 

Table 3.1 Results of Power for the Fixed-effects Model and Random-effects Model ..... 52 

Table 4.1 Type I Error Rates of Three Models – Equal Sample size 

        and Balanced Design................................................................................................. 64 

Table 4.2 Type I Error Rates of Fixed-Effects model with Varied 

        Population Effect Sizes ............................................................................................. 65 

Table 4.3 Statistical Power of the Fixed-effects Model (Equal Sample Size  

       and Balanced Design) ................................................................................................ 66 

Table 4.4 Statistical Power of the Random-effects Model (Balanced Design  

      and Equal Sample Size across Studies) ...................................................................... 68 

Table 4.5 Statistical Power of the Fixed-effects Model (Maximum sample size:  

       Average sample size * 3) ........................................................................................... 70 

Table 4.6 Statistical Power of the Random-effects Model (Maximum sample size:  

       Average sample size * 3) ........................................................................................... 72 

Table 4.7 Statistical Power of the Fixed-effects Model  

        (Average sample size ratio: 1:2) ............................................................................... 74 

Table 4.8 Statistical Power of the Random-effects Model  

       (Average sample size ratio: 1:2) ................................................................................ 76 

Table 4.9 Statistical Power of the Fixed-effects Model (Average sample size ratio –  

       1:2; Maximum sample size: Average sample size * 3) .............................................. 78 



www.manaraa.com

viii 
 

Table 4.10  Statistical Power of the Random-effects Model (Average sample size ratio – 

      1:2; Maximum sample size: Average sample size * 3) ............................................... 80 

Table 4.11 Power Difference between Equal Sample size and Unequal Sample Size ..... 82 

Table 4.12 Power Difference between Balanced Design and Unbalanced Design .......... 84 

Table 4.13 Power Difference between Equal Sample Size, Balanced Design  

        and Unequal Sample Size, Unbalanced Design ........................................................ 86 

Table 5.1 Sample Size Needed to Receive Power of .8 .................................................. 108 

  



www.manaraa.com

ix 
 

LIST OF FIGURES 

Figure 3.1 Power Curves under Different Parameter Values ........................................... 53 

Figure 4.1 Power curves by sample size and number of studies (fixed-effects model  

       equal sample size and balanced design)..................................................................... 88 

Figure 4.2 Power curves by sample size and number of studies (random-effects model 

        equal sample size and balanced design).................................................................... 89 

Figure 4.3 Power curves by sample size and number of studies (random-effects model  

        unequal sample size and balanced design) ................................................................ 90 

Figure 4.4 Power curves by sample size and number of studies (random-effects model  

        equal sample size and unbalanced design)................................................................ 91 

Figure 4.5 Power curves by sample size and number of studies (random-effects model 

       unequal sample size and unbalanced design) ............................................................. 92 

Figure 4.6 Power curves of the fixed-effects model ......................................................... 93 

Figure 4.7 Power curves of the random-effects model ..................................................... 94 

Figure 4.8 Power curves of the fixed-effects model ......................................................... 95 

Figure 4.9 Power curves of the random-effects model ..................................................... 96 

Figure 4.10 Power curves of the fixed-effects model ....................................................... 97 

Figure 4.11 Power curves of the fixed-effects model ....................................................... 99 

Figure 4.12 Power curves of the random-effects model ................................................... 98 

Figure 4.13 Power curves of the random-effects model ................................................. 100 



www.manaraa.com

1 
 

CHAPTER 1  

STATISTICAL POWER

A research study usually starts with the development of a significant research question. 

For example, a school psychologist may want to know whether a certain intervention can 

help manage children with behavioral problems. A program evaluation specialist may be 

interested in knowing whether technology usage (e.g., iPad/iPod) in classroom instruction 

helps improve students’ engagement levels. An educational researcher might want to 

examine the difference in math abilities between boys and girls.  After the research 

question has been developed, researchers develop an appropriate study design to initiate 

the research study. 

Common research designs include experimental studies, survey research, focus 

group research, and case studies. Most of the time, the entire population cannot be 

observed due to limited time and resources. A sampling scheme is used to obtain a 

sample representative of the population. After data are collected from the sample, the 

researcher will conduct data analysis on the sample to generalize to a larger population 

and thus, shed new light on the research question (Bhattacherjee, 2012). 

There are two branches of research methodology in social science research: 

qualitative and quantitative methods. Qualitative methodology involves the examination 

of the data obtained from interviews, observations, and focus group studies. For instance, 

a qualitative researcher can use diverse coding strategies to categorize the observations, 

identify themes, and reflect on the research question. With these analysis demands, a
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qualitative inquiry does not utilize a large amount of empirical data.  On the other hand, 

quantitative methodology uses numeric data and statistical analysis to summarize 

information and draw inferences. A mixed method design is to integrate qualitative and 

quantitative data into one study (Johnson & Onwuegbuzie, 2004). Depending on the 

nature of the quantitative analysis, the empirical analysis can use descriptive statistics and 

inferential statistics. The descriptive statistics can be used to summarize the information 

from the collected data (e.g., frequency distribution, dispersion, and correlation). 

Nevertheless, the descriptive statistics have limitations because they only provide 

information based on the sample data and do not allow inferences about the target 

population. A researcher invariably wants to generalize the results of a study to a much 

larger population. To draw an inference about the population, a researcher often resorts to 

inferential statistics and hypothesis testing.  

A hypothesis test has a null hypothesis and an alternative hypothesis about the 

population parameter, which is tied to the research question. A certain statistic (e.g., Z 

test or t-test) can then be applied to analyze the data and make a decision about the 

hypotheses. The null and alternative hypotheses are generated with reference to the 

population of interest. Typically, a researcher hopes to generalize the findings to the 

population through examining the sample data. That is why it is important to obtain a 

sample that is representative of the target population. Admittedly, convenience sampling 

is commonly used in social science studies, which limits the generalizability.  

A two-group comparison study provides an illustration of the hypothesis testing 

(e.g., gender difference in self-efficacy). The null hypothesis (𝐻0) is defined as the lack 

of treatment effect or group difference on the continuous outcome. The alternative 
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hypothesis (𝐻𝑎) is the direct opposite of the null hypothesis, or the complement of the 

null hypothesis. It suggests the existence of a treatment effect or some difference between 

the two genders.   

Researchers need to make a decision in the hypothesis testing and, ultimately, 

provide a yes or no answer to the research question after examining the test statistic. This 

decision is based on probability theory. It involves examining the likelihood of observing 

the test statistics by assuming that the null hypothesis is true. For example, in a two-

group comparison study with a known population variance, the computed test statistic 

(i.e., Z) should fall in a certain area of the standard normal distribution. If the Z statistic is 

not far away from the center of the probability distribution, the test result is deemed as 

expected under the assumption of the null hypothesis. This does not constitute strong 

evidence against the null hypothesis. Therefore, the null hypothesis cannot be rejected in 

this instance.  

The null hypothesis can be rejected when the Z statistic deviates from the center 

of the standard normal distribution. Typically, researchers wish to reject the null 

hypothesis in order to confirm the treatment effect (a significant mean difference between 

the two groups).  A threshold value (denoted as alpha, 𝛼) is used to decide whether the 

null hypothesis should be rejected or not. The alpha is the maximum probability that a 

true null hypothesis can be rejected. It is also called the significance level and is 

traditionally set to .05. This value provides a benchmark for rejecting the null hypothesis 

and achieving statistical significance. The benchmark is used to calibrate the statistical 

significance in obtaining a deviant statistic.  The probability of obtaining the Z statistic at 

least deviant from its most expected values under the null is defined as the p-value. If the 
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p-value is less than .05, it suggests that the test statistic is discrepant enough from the 

expected value to reject the null hypothesis of no treatment effect.  

The rejection of the null hypothesis can occur when the null hypothesis is either 

true or false, which implies different consequences. The consequences can be illustrated 

in Table1.1.  There are four possible scenarios, regardless of which decision is made. 

First, there are two possibilities in the population: the lack of a mean difference and the 

existence of a mean difference. Second, the decision can be either rejecting the null 

hypothesis or retaining the null hypothesis on the basis of the sample data. 

If the null hypothesis is true (the lack of a mean difference), the correct decision is 

to retain the null hypothesis. If the null hypothesis is not true (existence of a mean 

difference), the correct decision is to reject the null hypothesis. Although researchers 

always want to make the correct decisions, they need to acknowledge the possibility of 

making incorrect ones. There are two types of error because of the existence of the two 

competing hypotheses and the two possible decisions. Type I error is the probability of 

rejecting the null hypothesis when it is actually true. Type I error is limited by the 

significance level (𝛼) or the maximum probability of rejecting a true null hypothesis. The 

probability of not rejecting a false null hypothesis is Type II error (denoted as beta, β). A 

false null hypothesis means that the alternative hypothesis is true: there is a treatment 

effect existing in the population. If the researcher fails to reject the null hypothesis, he or 

she commits a Type II error. The probability of not making a Type II error when the null 

hypothesis is false refers to statistical power. As statistical power is inversely related to 

this error, it can be expressed as 1- β. In other words, statistical power is conceptually 

defined as the probability of rejecting a false null hypothesis. Researchers often like to 
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increase statistical power to raise the chances of confirming the possible group 

differences in hypothesis testing.  

In short, Type I error and statistical power are important properties of a 

hypothesis test. Researchers always aim to control both types of errors. Type I error is 

traditionally controlled by the significance level. All the hypothesis tests must have a 

predetermined significance level to limit the Type I error rate. However, research studies 

vary widely in statistical power. Several factors can influence statistical power. In the 

following, the determinants of statistical power are described and discussed.  

Determinants of Statistical Power 

Statistical power is related to the following factors: sample size, population effect 

size, and the Type I error rate (Borenstein, Hedges, Higgins, and Rothstein, 2010; Cohen, 

1988; 1992; Ellis, 2010; Lipsey and Hurley, 2009; Liu, 2013). All of them are discussed 

in the following paragraphs.  

Sample size 

Sample size affects the sampling error in a study, and it is one of the most 

important determinants of statistical power. Unlike other determinants, sample size can 

be controlled by researchers. A goal of a research study is to find an appropriate sample 

size to attain the desired statistical power. Increasing sample size is a straightforward way 

to increase statistical power while other parameters are held constant. However, 

researchers may not be able to obtain a large sample size, due to high costs and the 

limited pool of participants (Lipsey & Hurley, 2009). For instance, the attrition of 

participants in a longitudinal study may influence the final sample size in data analysis 

and, in turn, the statistical power. Besides the total sample size, other sample size related 
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factors may influence the statistical power as well. For instance, the unbalanced design 

between two groups contributes to the loss of statistical power (Hsu, 1994). 

Effect size 

Another factor is the treatment effect (i.e., group difference) in a study. A large 

effect size contributes to high power; a small effect size returns low power. The effect 

size describes the magnitude of the treatment effect (e.g., population mean differences). It 

is the degree to which the null hypothesis is false (Cohen, 1988, p10). Other things being 

equal, effect size is positively related to statistical power. For the comparison of the two 

group mean difference on a continuous outcome (e.g., gender difference in the behavioral 

and emotional problems), the simple effect size is the mean difference of the outcome 

between the two groups. Dividing the simple effect size by the common standard 

deviation yields the standardized effect size, ES. The standardized effect size does not 

depend on the original measurement scale and can be compared across studies.  

𝐸𝑆 =
𝜇1 − 𝜇2

𝜎
 

The standardized effect size expresses the mean difference in the unit of a 

common standard deviation. Positive values indicate higher outcomes in first group and 

negative values indicate higher outcomes in the second group. Cohen (1988) defined .2, 

.5, and .8 as small, medium, and large effects, respectively, in the behavioral sciences. 

Standardized effect size is widely used in power analysis. This parameter is influenced by 

both the mean difference and the variance. For instance, even though the mean 

differences between groups are large, the standardized effect can be decreased by a large 

standard deviation. Researchers can target a subpopulation with similar characteristics so 

that the variation of the outcome (standard deviation) is controlled. Researchers cannot 
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obtain the effect size from the population directly and they need to estimate that from 

previously done studies. A minimum detectable effect size may be assumed for the effect 

size in power analysis (Liu, 2013). Alternatively, researchers can select plausible values 

based on substantive or clinical importance, and existing data (Borenstein, Hedges, 

Higgins & Rothstein, 2010).   

Significance Level 

The significance level defines the risk of committing Type I error (i.e., α = .05). It 

is less likely to reject a true null hypothesis with a lower value, regardless of the used 

sample size or the actual effect size. Type I error has a negative relationship with Type II 

error. In other words, a smaller Type I error corresponds to a higher Type II error or a 

lower statistical power, while other things being equal. Since these two errors are both 

important, researchers need to pay attention not only to Type I error and but also to Type 

II error (i.e., statistical power). Lipsey and Hurley (2009) discussed how to set the 

balance in controlling the two types of error. Researchers need to weigh the relative 

seriousness of the two errors.  The most common approach is to set alpha and beta equal. 

Borenstein, Hedges, Higgins, and Rothstein (2010) also suggested that researchers should 

adjust the two errors as appropriate for a given study instead of simply applying the .05 

and .8 guideline.  

The three determinants are all related to statistical power and all need to be 

simultaneously considered in power analysis. Researchers typically conduct statistical 

power analysis to find the necessary sample sizes with respect to the minimum detectable 

effect size to achieve the desired power (Ellis, 2010). Admittedly, other factors such as 



www.manaraa.com

 

8 

the type of statistical test, the reliability of the outcome measure, and the quality of the 

study design all influence the statistical power.  

Prospective and Retrospective Power 

There are two main kinds of power analyses – prospective and retrospective 

power analysis. Prospective power analysis is a part of research planning and is 

completed prior to the implementation of a study. It is mostly used to estimate the 

required sample size with reference to the other parameters in hypothesis testing. For 

instance, when researchers intend to conduct a replicate study, they need to search the 

past research to identify the potential population effect sizes. For example, if the Type I 

error and power are set .05 and .8, the necessary sample needed for error control is 

determined in power analysis for the research planning. As mentioned above, the two 

error values can vary if the researchers can justify their standards. Researchers may also 

check if the past research attained the ideal power, using the sample size from the 

previous study.  

After a study is completed, a retrospective power analysis can be conducted. For 

example, if researchers cannot reject the null hypothesis but believe in a treatment effect, 

they may consider low statistical power as a possible explanation for failure to confirm 

the treatment effect. However, some scholars are cautious about the retrospective power 

analysis. They suggest that power should not be based on the effect size obtained from 

the sample due to its possibly large sampling error. The effect size estimate from the 

sample cannot guarantee a good estimation of the statistical power. The post-hoc power 

analysis should assume the population effect sizes from previous studies of a similar 

nature (Thomas, 1997). 
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History of Statistical Power 

Statistical power has not received its due attention in social science research until 

several decades ago (Borenstein, Hedges, Higgins, and Rothstein, 2010; Cohen, 1988; 

1992; Ellis, 2010; Liu, 2013). Researchers appear not to be concerned with statistical 

power, as the research studies often lack sufficient statistical power. Fisher, who is 

credited for the creation of the significance test, did not think it was possible to calculate 

the statistical power. About a century ago, Neyman and Pearson recognized not only the 

error of rejecting a true null hypothesis (𝛼) but also the error of not rejecting a false null 

hypothesis (𝛽). Despite the controversial beginning of statistical power, it has been a 

popular topic in textbook and research articles (Cohen, 1988; Kraemer, Yesavage and 

Brooks, 1998; Lindsay, 1993; Liu, 2013; Murphy and Myors, 2004; Rossi, 1990). There 

is no uniform guideline for the desired statistical power across different studies.  

The importance of power analysis derives from the fact that investigators always 

want to reject the null hypothesis, which confirms the existence of a treatment effect 

(Cohen, 1992). Despite its importance, the current practice of power analysis leaves 

much to be desired. Statistical power sometimes was not done properly or completely 

ignored. Some researchers saw little use of conducting power analysis (Mone et al., 

1996). Onwuebuzie and Leech (2004) found that statistical power was ranked thirty-

fourth out of the thirty-nine topics discussed by the methodology instructors. Such an 

oversight may be due to the lack of references on statistical power (Nickerson, 2000). In 

the new century, most people who have experience in statistics should have learned the 

concept of power, but they may still have difficulty in performing a proper power 

analysis. The practical difficulty (e.g., unknown population effect size) may have 
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explained the lack of statistical power analysis in some new fields. Also, there is no strict 

requirement of including power estimates in a published study unless the scale of the 

prospective study is large and the funding agency demands a power analysis. In fact, the 

surveys of statistical power in the social sciences have all indicated insufficient power in 

published research studies (Cook and Hatala, 2014; Ellis, 2010; Mone et al. 1996). As 

power is essential to the goals of a research study, power analysis should be required for 

all the social science studies.  

Computation of Statistical Power 

Although power analysis is accessible in most of the statistical software (e.g., R 

and SAS), it is still necessary to understand the formula of power calculation. This will 

help researchers understand how the parameters in power analysis influence each other so 

that they can conduct a proper power analysis. In addition, the simulation of statistical 

power will be introduced because the simulation method can be used to check the 

accuracy of the power estimates based on approximation. The basic simulation code will 

be provided to illustrate the steps in the simulation of statistical power here. As power 

formulas vary from one statistical test to another one, the formula for statistical power in 

common statistics tests will be discussed in the following.  A more comprehensive review 

of power analysis in different tests can be found in the book Statistical Power Analysis 

for the Social and Behavioral Sciences (Liu, 2013).   

Power in a Z test  

In a two-group comparison study with a known population variance, the null 

hypothesis is 𝜇1 − 𝜇2 = 0  and the alternative hypothesis is  𝜇1 − 𝜇2 ≠ 0 (two sample 
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mean difference). The assumption of not knowing the directionality of a test is made, and 

two-sided test is considered.  

 

𝑍 =
𝑌1̅ − 𝑌2̅

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 

The test statistics Z follows a standard normal distribution when the null 

hypothesis is true. After the test statistics is obtained, the Type I error rate – probability 

of rejecting the null when it is true – can be calculated.  

𝑃 = 𝑃 [𝑍 > 𝑍
1−

𝛼
2

] + 𝑃 [𝑍 < 𝑍𝛼
2

], 

where the 𝑍1−
𝛼

2
  and 𝑍𝛼

2
 are the critical values on the two sides for the predetermined 

significance level (e.g., .05). 

Statistical power is calculated under the assumption that the alternative hypothesis 

is true or there is a mean difference between the two comparison conditions. When the 

alternative hypothesis is true, the test statistic no longer follows the central distribution 

(mean of the distribution is 0). Instead, it follows a non-central distribution with a shifted 

mean related to the population effect size, which is one of the determinants of the 

statistical power. The non-central distribution can be viewed as shifting the standard 

normal distribution to the left or right with a different mean but the same standard 

deviation. To simplify the illustration, the two sample sizes are set to be equal (𝑛1 =

𝑛2 = 𝑛) and a common standard deviation is assumed to the same between the two 

comparison populations (𝜎1 = 𝜎2 = 𝜎).  
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𝑍 =
𝑌1̅ − 𝑌2̅

𝜎
√

𝑛

2
 

The non-centrality parameter (𝜆) can be obtained by substituting the sample 

estimates with the population parameters in the formula for the Z-test.  

𝜆 =
𝜇1 − 𝜇2

𝜎
√

𝑛

2
 

The non-central 𝑍′ under the alternative hypothesis is determined by the non-centrality 

parameter lamda. 

Statistical power in a two-sided Z test can be expressed as:  

1 − 𝛽 = 𝑃[𝑍′ > 𝑍
1−

𝛼
2

] + 𝑃[𝑍′ < 𝑍𝛼
2

] 

This power value is related to the cumulative probability of rejecting the null hypothesis 

when it is false. It can be easily calculated with the help of statistical software. The 

distance between the two distributions is related to the non-centrality parameter and 

affects the statistical power. Other things being equal, the larger the non-centrality 

parameter is, the higher the statistical power will be for the significance test. Larger 

sample sizes and population effect sizes lead to higher λ and higher power. If a less 

stringent rejection criterion is used, it requires a less deviant 𝑍′ to exceed the critical 

value, which increases the statistical power.  

Power in a t test 

In practice, the population standard deviation is rarely known, so the t-test is more 

widely used with the sample estimates of the population standard deviation. As in the Z 

test, researchers can assume a pooled sample standard deviation for both groups (𝜎1̂ =

𝜎2̂ = 𝜎̂).  
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𝑇 =
𝑌1̅ − 𝑌2̅

√
𝜎̂1

2

𝑛1
+

𝜎̂2
2

𝑛2

 

The pooled sample standard deviation is 

𝜎̂=√
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
, 

where 𝑠1
2 and 𝑠2

2 are the sample variances of the two groups. 

The test statistic follows a t distribution, which is influenced by degrees of 

freedom. The degrees of freedom are equal to (n1 + n2 − 2) in a two-sample independent 

T test. The p-value of obtaining a t statistics is calculated in a similar way as that in the Z 

test, except that a t distribution has a degree of freedom. It should be noted that a t 

distribution is close to the standard normal distribution for large degrees of freedom.  

When the degrees of freedom are large, the sample size is large and the sample estimate 

of the variance is very close to its population counterpart. Similar to the power in a Z-test, 

the power function for a two-sided t-test is  

1 − 𝛽 = 𝑃[𝑇′ > 𝑡
1−

𝛼
2

,𝑁−2
] + 𝑃[𝑇′ < 𝑡𝛼

2
,𝑁−2

] 

Power in an F test 

In practice, researchers may have more than two groups in comparing mean 

differences (e.g., ethnicity). An ANOVA analysis can be done to compare those multiple 

groups, and an F test can be used here. Unlike Z-test or t-test, the F statistic is used to 

check if there are any significant differences among the multiple groups. The F statistic is 

the ratio of the average between-group variance and the average within-group variance. 

𝐹 =
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 /𝑣1

𝑊𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑎𝑟𝑒𝑠 /𝑣2
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The F ratio compares the between-groups variation (treatment effects or group 

differences) with the within-groups variation (random variation among individuals). 

There are two degrees of freedoms: one in the nominator and the other in the 

denominator (𝑣1 is the number of groups – 1 and 𝑣2 is total sample size – the number of 

groups). Larger F values lead to smaller p-values, which mean that the treatment effect 

appears prominent against the error variation due to individual variation. If the p-value of 

the F statistic is less than the significance level, the null hypothesis will be rejected and 

the treatment effect is detected. 

The statistical power of the F test is the probability of obtaining an F statistic 

exceeding the critical value that is used to reject/retain the null hypothesis. The F statistic 

follows central F distribution when there are no group differences or treatment effects. 

Unlike the Z and T distribution, an F distribution is not symmetric and is skewed to the 

right side. When the alternative hypothesis is true, the F statistics follows a non-central 

distribution or F’ for short. The non-central F has the same degrees of freedom as the 

central F statistic and a centrality parameter:  

𝜆 = ∑
𝑛𝑗𝛼𝑗

2

𝜎2
, 

where 𝜎2 is the population variance,  𝛼𝑗 is the difference between the population mean of 

the group j and the population grand mean, and  𝑛𝑗  is the number of people in each group. 

The process of obtaining the parameter is beyond the scope of this review but can be 

found in the related text (e.g., Liu, 2013). The power function for the F test can be 

expressed in terms of the cumulative distribution of the non-central F,  

1 − 𝛽 = 𝑃[𝐹′(𝑣1, 𝑣2, 𝜆) ≥ 𝐹0] = 1 − 𝑃[(𝑣1, 𝑣2, 𝜆) < 𝐹0]. 
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The F test is used only to examine whether there are any mean differences among 

all the groups.  It does not show how groups might differ between themselves.  

Researchers usually follow up an F test with simultaneous means comparisons (post-hoc 

tests) to locate any mean differences among the groups. The power of the post-hoc tests is 

based on the t-test.  The t-test statistic can be written as:  

𝑇 =
𝑌𝑗̅ − 𝑌𝑗′̅̅ ̅

𝜎̂√
1
𝑛𝑗

+
1

𝑛𝑗′

, 

where 𝑌𝑗̅ and 𝑌𝑗′̅̅ ̅are the group means, 𝑛𝑗′and 𝑛𝑗 are the group sizes,  and 𝜎̂ is the root 

mean square error or the square root of the mean squares for error.  

The non-centrality parameter λ is:  

λ = √
𝑛𝑗nj′

nj′ + 𝑛𝑗

𝑢𝑗 − uj′

σ̂
 

The statistical power for the two-sided T test is  

1 − 𝛽 = (𝑇′(𝑁 − 𝐽, 𝜆) > 𝑡1−
𝛼

2𝑚
,𝑁−𝐽 + 𝑃(𝑇′(𝑁 − 𝐽, 𝜆) < 𝑡 𝛼

2𝑚
,𝑁−𝐽, 

where N is the total sample size, J is the number of groups, and m is the number of 

comparison tests. The computation is similar to the power analysis in a regular T test, 

except the Bonferroni adjustment is applied to control the family-wise Type I error. 

However, the Bonferroni adjustment may make researchers hard to reject the null 

hypothesis. Some other procedures, such as Turkey’s HSD test and Dunnett’s test, should 

be considered.  
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Simulation of Statistical Power 

Power functions become rather complicated when more advanced statistical tests 

are used (Liu, 2013). Sometimes, simulation can be used to avoid computational 

complexity in power analysis. Simulation studies are widely used in empirical research.  

The simulation studies involve generating data from computer programs to study the 

performance of the statistical estimates under different conditions (Hutchinson & 

Bandalos, 1997). For example, most people can use simulation to learn about Type I error 

when the model assumptions are not met. This can be done in simulation by generating 

data under different model assumptions.   

The idea of simulation uses the same logic of hypothesis testing. If there is no real 

effect, researchers hope to retain the null hypothesis most of the time and control the 

Type I error. If there is a real existing effect, researchers hope to reject the null 

hypothesis as much as possible. Simulation can be used to check the performance of 

actual Type I error and power by repeating the same statistical procedures many times 

under regular model assumptions or under different model assumptions.  

Simulations can be conducted with the help of computer software (e.g., R). For 

instance, in a two sample t test, the effect size can be simulated a certain number of times 

(e.g., Simultime=1000) by assuming a certain mean (e.g., PopulationEffect=0.2) and 

standard deviation (e.g., SD=.1). In addition, the sample size is supplied in each 

repetition (e.g., Samplesize=100). These numbers can vary in practice according to the 

research settings. An example of such code from R is shown below. 

PopulationEffect<-0.2 

SD<-1 

Simultime<-10 

Samplesize<-100 
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Repeating the same process many times can help researcher calculate the rejection 

rate of a test or simulated power.  In each repetition, a p-value is retained to make a 

statistical decision (reject or retain the null hypothesis).  

pv<-rep(NA,Simultime) 

for (i in 1: Simultime) 

{print (i) 

 SimuValues<-rnorm(Samplesize, PopulationEffect, SD) 

 pv[i]<-t.test(SimuValues,alternative= "two.sided",  

mu=0)$p.value 

} 

mean(pv<.05) 

 

Finally, 1000 p-values are stored in the output. The same strategy applies to 

simulated statistical power.  The proportion of the rejected null hypotheses among all the 

simulated tests is the simulated statistical power when the simulated tests assume a non-

zero treatment effect. The power under the above condition is around .5. Repeating the 

process more times can improve the stability of the results. The computing time of the 

simulation should be considered because time cost is important in a study.  

The complete code of the two sample t test is given in the appendix, and it can be 

adapted to simulate the power in the Z and F tests. Researchers can use computer 

simulation to compare the discrepancy between the simulated power and the power based 

on formulas. The simulation can provide an easy and direct way to cross check the power 

based on the analytical formulas with the observed power obtained from the simulated 

studies. In particular, simulation can be utilized to check the accuracy of statistical power 

in meta-analysis, which is based on the approximate formulas in the literature. The 

research questions will be stated clearly after the introduction of meta-analysis in Chapter 

2.    
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Table 1.1 Decision Making in a Hypothesis Test 

 

Decisions from the 

hypothesis testing 

of the sample data 

Truth (Population) 

H0  True (No effect & 

difference) 

H0  False (Real effect 

& differences) 

Retain 𝐻0  

 

Correct Decision 

 
Type II error (β) 

Reject 𝐻0  Type I error (α) Correct Decision 

(Power) 
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CHAPTER 2 

META-ANALYSIS 

Meta-analysis is a quantitative review method, which synthesizes the results of several 

studies on the same topic. In a meta-analysis, a researcher combines the effect size 

estimates from a set of small studies to get a common effect size estimate (i.e., the 

direction and magnitude of the treatment effect).  Thus, meta-analysis has the potential to 

overcome the shortcomings of a single primary study because a small primary study can 

be limited in sample size, estimate precision, and generalizability (Ellis, 2010; Hedges & 

Pigott, 2001).  

Limitations of Primary Studies and Narrative Review 

In quantitative research, numerous studies use primary samples collected on a 

small scale. Due to the time and resource constraints, there are always some limitations of 

those primary studies of small size, that is, the lack of generalizability of the findings and 

the low level of statistical power.  

Generalizability or external validity refers to the extent, to which the study results 

can be generalized to a broader setting (Trochim, 2000). The generalizability of a study 

may be limited in a small primary study because of the specific sampling strategies 

involved. It is well-known that a primary study can use either a probability sample (e.g., 

simple random sampling) or a non-probability sample (e.g., convenience sampling). If it 

is a probability sample, the researchers can generalize the conclusion of a study to a 

larger population, from which the samples were randomly selected. If a study uses a
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convenience sample, the study results, however, might not generalize to a larger 

population. Despite this flaw, convenience sampling or other non-probability sampling 

strategies are still used in practice. Even when a probability sample is used, a primary 

study has other challenging issues. For example, the problem of small sample size can be 

exacerbated if there is anticipated participant drop-out like that in longitudinal studies 

(Hogan, Roy & Korkontzelou, 2004). A small sample size can lower the statistical power 

in testing the treatment effect.   

As discussed in Chapter 1, power analysis is often overlooked in social science 

research (Bezau & Graves, 2001), and the surveys of power in different social science 

fields indicate that many published articles have low statistical power (Ellis , 2010). 

Given the fact that the published research has more significant results than the 

unpublished research, the actual power of unpublished studies could have been even 

lower in practice. As noted by Cafri, Kromrey and Brannick (2010), the power in social 

science research generally did not have sufficient power to detect small and medium 

effect sizes in the populations. In addition, researchers may not be able to collect data to 

reach the ideal statistical power, due to the time and logistic constraints.  In fact, low 

statistical power is often the explanation of inconclusive conclusions among small 

primary studies.  

A qualitative review can be used to inquire about inconclusive study results.  

Researchers can review the literature to “circumscribe the boundaries of existing 

knowledge and to identify potential avenues for further inquiry (Ellis, 2010, p. 90).”  

However, the narrative summaries of past research cannot overcome the shortcomings of 

small primary studies, especially the issue of low statistical power. First, researchers have 



www.manaraa.com

 

21 

practical difficulties, such as no access to certain resources, including all studies of the 

target topic. They cannot obtain a satisfactory level of generalizability. Even though 

researchers can assume that they include all studies, they will not be able to address the 

concern over low statistical power. Meta-analysis allows researchers to overcome the 

limitations of a qualitative review. They can use meta-analysis to combine the effect size 

estimates and reconcile the inconsistent findings across a large number of small studies 

(Hunter & Schmidt (2004).  

Advantages of Meta-analysis 

Meta-analysis is better suited to addressing the limitations of small primary 

studies or qualitative reviews. Scholars first noted the importance of developing strategies 

of meta-analysis almost forty years ago. Glass (1976) first introduced the method: 

Most of us were trained to analyze complex relationships among variables in the 

primary analysis of research data. But at the higher level, where invariance, non-

uniformity and uncertainty are no less evident, we too often substitute literary 

exposition for quantitative rigor. The proper integration of research requires the 

same statistical methods that applied in primary data analysis. (p. 6)  

Reference books have been written on the subject of meta-analysis.  In Statistical 

Methods for Meta-analysis, Hedges, and Olkin (1985) suggested that meta-analysis could 

address the two issues that could not be solved in conventional studies: (1) the 

impossibility of testing the inconsistency across studies and (2) the impossibility of 

conducting a test for the average effect size of studies. 

Hunter and Schmidt (2004, p. 16) stated that meta-analysis can help improve the 

limited generalizability of primary studies and summarize research literatures to form a 
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cumulative knowledge base. For example, researchers can use meta-analysis to broaden 

the applicability of the findings.  Also, meta-analysis can suggest directions for new 

research. 

Borenstein, Hedges, Higgins and Rothstein (2009) noted that the goal of a 

synthesis is to understand the results of any study in the context of all other studies. There 

are two fundamental changes in meta-analysis: (1) we work directly with effect size in 

each study instead of p-value; (2) we include all of the effects in a single statistical 

synthesis. This is critically important for the goal of computing a summary effect size, 

while any narrative reviews cannot provide any means to synthesize such data.  

Ellis (2010) discussed the advantages of a meta-analysis over a narrative review.  

He listed several benefits of using a meta-analysis:  

(1) Bring a high level of discipline to the review process. It is a more objective 

process.  

(2) Cumulating data (effect size) instead of conclusions (p-value).  

(3) Provide definitive answers to questions regarding the nature of an effect even 

in the presence of conflicting findings 

(4) Work as a tool for theory development and a guide for future research.  

Meta-analysis can also increase statistical power in testing a treatment effect.  

Borenstein, Hedges, Higgins and Rothstein (2009) and Liu (2013) demonstrated why 

meta-analysis could increase statistical power when compared with a single study. The 

reason for the increased power can be simply explained by the fact that the combined 

data from small studies increase the overall sample size in a meta-analysis. The increased 
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total sample size in a meta-analysis helps increase the non-centrality parameter, which in 

turn improves statistical power in testing the treatment effect.  

Effect Size in Meta-analysis 

A key concept in meta-analysis is the effect size. Researchers decide to reject or 

retain the null hypothesis, based on the p-value of a test statistics (statistical significance), 

while they use effect size to measure the magnitude of an effect, sometimes referred to as 

the practical significance of a test.  As suggested by Cohen (1990, page 1310), “the 

primary product of a research inquiry is one or more measures of effect size, not p 

values.”  Effect size is not only important in the primary studies but also critical in meta-

analysis as scholars combine the effect size from studies to get an average estimate of the 

treatment effects across studies. Ellis (2010) included a good summary of different kinds 

of effect sizes. There are two major families of effect size: d (e.g., odds ratio, Cohen’s d; 

differences between groups) and r (e.g., Pearson correlation, Cohen’s f; measure of 

association). The current study focuses on two group differences in continuous outcomes.  

Two kinds of conceptual models can be employed in meta-analysis. They are 

formulated, according to the property of the effect sizes in individual studies. A fixed-

effects model treats the population effect sizes from individual studies as the same. In 

other words, there is a common population effect size across studies in the fixed-effects 

model. By contrast, a random-effects model treats the population effect sizes from 

individual studies as a random sample of all possible effect sizes with an underlying 

distribution (e.g., normal distribution). In a fixed-effects model, the only reason the effect 

size varies is the random error. In a random-effects model, the effect size can be 

influenced by random error and the effects of different studies. While discussing model 
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selection, Hedges and Vevea (1998) stated that fixed-effects models are designed to make 

inferences about a population exactly like the studies sampled, but random-effects models 

are designed to draw inferences about a population that may be not exactly identical.  The 

fixed-effects models were used frequently in practice, and the random-effects models 

have seen increased use over time (Cafri, Kromrey & Brannick, 2010). Until now, there 

are no absolute guidelines for model selection. However, the model selection does affect 

how the effect size indexes are combined in the meta-analysis. 

In meta-analysis the effect sizes are always combined to compute the average 

effect size and its variance, which form a statistic test (i.e., Z-test). One can then use the 

test statistic to make a decision about retaining or rejecting the null hypothesis about the 

average effect size.  In the following, the fixed-effects and random-effects meta-analysis 

are described in details for easy reference. 

Analytical Procedures 

The first step of a meta-analysis is to define the research questions and the study 

design. Researchers need to perform a comprehensive literature review to include and 

summarize the studies for the meta-analysis. Well-formulated research questions and 

thorough literature review contribute to the high quality of a meta-analysis study. Once 

the information from primary studies has been processed, researchers need to identify a 

common measure to all studies and combine the effect sizes from individual studies 

(Normand, 1999). 

To investigate the estimation and power function of meta-analysis, we first review 

the basic analytical procedures in fixed-effects and random-effects meta-analyses 

(Borenstein, 2009; Hedges, Borenstein, Hedges, Higgins & Rothstein, 2010). The 
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analytical procedures and the power calculations are explained for both the fixed-effects 

meta-analysis and the random-effects meta-analysis later in this chapter.  

The two-group mean difference is used as the effect size index for several 

reasons. First, it is a widely used effect size index in practice. For instance, many 

researchers are interested in the gender differences on certain continuous outcomes, such 

as achievement levels and behavioral problems. Similar studies can be found online 

easily. If we search the “meta-analysis” and “gender difference” through the ERIC and 

Education Resource database, there are 389 results. A certain amount of them used 

continuous outcomes. Other similar two group tests with continuous outcomes can be 

searched online too. Hattie (2009) reviewed over 800 meta-analysis related to 

achievement using the effect size index d, which also indicates that the popularity of this 

index. Secondly, few simulation studies have been conducted to analyze the performance 

of this effect size index.  

Cohen’s d is used as the effect size index of each study to investigate the mean 

differences across groups. Cohen’s d is used frequently when there is a continuous 

outcome for two groups of subjects, such as treatment and control groups in the 

experimental design. For example, female and male students naturally form two 

comparison groups. This kind of analysis is widely used in applied research in social 

science research. The formula to calculate Cohen’s d (e.g., Ellis, 2010; Liu, 2013) is:  

Cohen′d =
X1
̅̅ ̅ − X2

̅̅ ̅

𝑠𝑝
. 

where X1
̅̅ ̅ and X2

̅̅ ̅ are the sample means for two groups, and 𝑠𝑝 is the pooled standard 

deviation of two groups.  
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It is noted that the assumption of pooled standard deviation is not always met in 

practice especially when the sample size between two groups are not balanced. In 

addition, d tends to overestimate the population variance. The bias can be removed by 

Hedge’s g, which weights the standard deviation by its sample size (Hedges, 1981). It can 

be converted from d using the following correction factor (Borenstein, Hedges, Higgins, 

and Rothstein, 2010):  

𝐽 = 1 −
3

4𝑑𝑓 − 1
 

Where the degree of freedom is the overall sample size – 2.  

Hedge′s g = 𝐽 ∗  d. 

One of the major meta-analysis methods were developed by Hedges and his 

colleagues (Hedges & Olkin, 1985; Hedges & Vevea, 1998). The analytical power 

formulas were developed by Hedges and Pigott (2001). The fixed and random-effects 

model were discussed separately.  

Fixed-effects Meta-analysis  

The common effect size estimate for the ith individual study is equal to the 

standardized mean difference between the treatment condition and control condition 

(Cohen, 1988) 

d𝑖 =
𝑌̅1 − 𝑌̅2

𝑠𝑝
 . 

In this formula 𝑌̅1 and 𝑌̅2 are the means for two groups, and 𝑠𝑝 is the pooled 

standard deviation in a two independent sample t- test. The effect size estimate d𝑖 

corresponds to a population effect size of θ𝑖. 
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I denote 𝑡𝑖, 𝑛̅1, and 𝑛̅2 as the reported t statistics, the treatment group size, and the 

control group size of the ith study in a meta-analysis, 

𝑡𝑖 =
𝑌̅𝑒 − 𝑌̅𝑐

𝑠𝑝√
1

𝑛̅1𝑖
+

1
𝑛̅2𝑖

. 

Thus, d𝑖 can be expressed in terms of the t statistic,  

d𝑖 = 𝑡𝑖√
1

𝑛1𝑖
+

1

𝑛2𝑖
 . 

The effect size d𝑖 is assumed to have an underlying T distribution with mean of θ𝑖 

and variance of v𝑖. According to Hedges and Olkin (1985), the variance term is known to 

be 

𝑣𝑖 =
𝑛1𝑖 + 𝑛2𝑖

𝑛1𝑖𝑛2𝑖
+

𝑑𝑖
2

2(𝑛1𝑖 + 𝑛2𝑖)
. 

The corrected variance of Hedge’s g is  

𝑣𝑔𝑖 = 𝐽2 ∗ 𝑣𝑖 . 

        The null hypothesis for the population effect size for each individual study is 𝜃1 =

𝜃2 … = 𝜃𝑖 = ⋯ = 𝜃 = 0. The fixed-effects model becomes 

d𝑖 = 𝜃 + 𝑒𝑖 , 

where 𝑒𝑖 has a mean of zero and variance of 𝑣𝑖. The common effect size can be estimated 

by pooling the estimates from individual studies, where the effect size estimates from 

those studies are weighted by the sampling variances of individual studies.  An effect size 

estimate from a study with a larger sample size will receive more weight because the 

estimate is more precise with a smaller sampling variance. The weight 𝑤𝑖 is the 
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reciprocal of the variance term 𝑣𝑖 (𝑤𝑖 = 1/𝑣𝑖). The estimate of common effect size is a 

weighted average.  

𝜃 = d̅ = ∑ 𝑤𝑖𝑑𝑖

𝐼

𝑖=1

/ ∑ 𝑤𝑖

𝐼

𝑖=1

 

The variance of the weighted average 𝑣 or Var( d̅) is simply the reciprocal of the 

sum of weights.  

𝑣 = 1/ ∑ 𝑤𝑖

𝐼

𝑖=1

 

An approximate Z-test can be used to test the null hypothesis that the common effect 

size 𝜃 is zero, using the weighted average estimate.  

𝑍 =
d̅ − 0

√𝑣
 

The p-value in a two-sided test is the probability of obtaining a z statistic at least 

deviant from the center of the standard normal distribution as the computed one.  A small 

p-value less than or equal to five percent will result in the rejection of the null hypothesis, 

which is followed by pronouncement of a non-zero common effect size.  A confidence 

interval can be computed to accompany the significance test for the common effect size. 

The 95% confidence interval for the common effect size is estimated as:  

𝑑̅ ± 1.96 ∗ √𝑣. 

When the alternative hypothesis is true, the common effect size is equal to a non-

zero constant 𝜃𝑎. The Z test follows a non-central normal distribution Z’ with a non-

centrality parameter 𝜆:  

𝜆 =
𝜃𝑎

√𝑣𝜃𝑎

 . 
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The current procedure assumes a common variance of all studies (𝑣̅𝑖) to simplify 

the 𝑣 for power computation because it can greatly simplify the variance formula. If 

variances of all the studies are thought be approximately equal, that is, 𝑣1 = 𝑣2 … = 𝑣𝑖 =

⋯ = 𝑣𝐼. It is noted that this an ideal assumption, because the variance of all studies are 

not identical. The variance 𝑣 can be simplified to 

𝑣𝜃𝑎
=

𝑣̅𝑖

𝐼
 , 

where 𝑣̅𝑖 is the average of overall variance for all studies. 𝑣̅𝑖   can be computed by using 

the average sample sizes for 𝑛𝑒𝑖 and 𝑛𝑐𝑖 and the estimated 𝑑𝑖 = 𝜃𝑎. The variance thus 

computed is an approximation of the actual variance (Hedges & Pigott, 2001), 

𝜆 =
𝜃𝑎

√𝑣𝜃𝑎

≈
𝜃𝑎

√𝑣̅𝑖

𝐼

=
√𝐼𝜃𝑎

√𝑣̅𝑖

  . 

In order to simplify the calculation, the treatment group and control group size are 

assumed to be equal (𝑛̅1𝑖 = 𝑛̅2𝑖 = 𝑛): 

𝑣̅𝑖 ≈
𝑛̅1𝑖 + 𝑛̅2𝑖

𝑛̅1𝑖𝑛̅2𝑖
+

𝜃𝑎
2

2(𝑛̅1𝑖 + 𝑛̅2𝑖)
  . 

The non-centrality parameter in the meta-analysis can be changed to 

λ =
√𝐼𝜃𝑎

√2
𝑛 +

𝜃𝑎
2

4𝑛

 , 

where 𝜃𝑎  is the standardized mean difference common to all individual studies.  The term 

𝜃𝑎
2/4𝑛 is very small, especially when the population effect size (𝜃𝑎) is small and the 

sample size for each group (𝑛) is large. Dropping the negligible term in λ yields   

λ ≈ √𝐼𝜃𝑎√
𝑛

2
 . 
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The power function for the two sided test is, therefore, 

1 −β ≈ 𝑃[|𝑍′(𝜆)| ≥ 𝑍0] 

= 1 −Φ(𝑍0 − 𝜆) +Φ(−𝑍0 − 𝜆). 

Random-effects Meta-analysis  

In the random-effects model the effect size estimates from individual studies have an 

underlying distribution. The effect size estimate d𝑖 follows a normal distribution with 

mean of 𝜃𝑖 and variance of 𝑣𝑖, that is, 

d𝑖 = 𝜃𝑖 + 𝑒𝑖. 

The parameter 𝜃𝑖 has an underlying distribution with a mean 𝜃 and a variance of 

𝜏. It is assumed that the population effect sizes from individual studies follows a normal 

distribution. Unlike the fixed-effects model, the random-effects model suggests that the 

effect sizes bounce around the grand average effect size 𝜃. Thus, d𝑖 becomes 

d𝑖 = 𝜃 + 𝛼𝑖 + 𝑒𝑖. 

The random effect 𝛼𝑖 is due to different individual studies with its variance 𝜏.  The 

random effect 𝑒𝑖 is the sampling error of d𝑖 with its variance of 𝑣𝑖. 

The random-effects model can be reformulated so that the same procedure can be 

applied the fixed-effects model. The random-effects 𝛼𝑖 and 𝑒𝑖  can be combined into a 

single error term 𝑒𝑖
∗. Thus d𝑖 becomes 

d𝑖 = 𝜃 + 𝑒𝑖
∗ , 

where 𝑒𝑖
∗ = 𝛼𝑖 + 𝑒𝑖 and 𝑣𝑖

∗ = 𝑉𝑎𝑟(𝑒𝑖
∗) = 𝑣𝑖 +  𝜏. Now the random-effects model can be 

treated as a special case of the fixed-effects model with a more complex variance 𝑣𝑖
∗. An 

approach that is similar to that used for the fixed-effects can be followed. The weight 𝑤𝑖
∗  

in the random-effects model is the reciprocal of the variance term 𝑣𝑖
∗ (𝑤𝑖

∗ = 1/𝑣𝑖
∗). 
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The weighted mean of the random-effects model can be computed: 

d̅ =
∑ 𝑤𝑖

∗𝑑𝑖
𝐼
𝑖=1

∑ 𝑤𝑖
∗𝐼

𝑖=1

. 

The variance of d̅ is:  

𝑣∗ =
1

∑ 𝑤𝑖
∗𝐼

𝑖=1

, 

where 𝑣𝑖 is the same way estimated before. Hedge’s g correction is used for the random-

effects model is similar as the fixed-effects model. The variance 𝜏 can be estimated, 

according to Hedges and Vevea (1998):  

𝜏 =
𝑄 − (𝑘 − 1)

𝑐
 , 

where  𝑄 = ∑ 𝑤𝑖
𝑘
𝑖=1 (𝑑𝑖 − d̅)2   and  𝑐 = ∑ 𝑤𝑖

𝑘
𝑖=1 −

∑ 𝑤𝑖
2𝑘

𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

 . 

An approximate Z test can be used to test the null hypothesis(𝜃 = 0), based on the 

weighted average estimate: 

𝑍 =
d̅ − 0

√𝑣∗
 . 

A small p-value less than or equal to five percent will result in the rejection of the null 

hypothesis, which is followed by declaration of a non-zero common effect size.  A 

confidence interval can be computed to accompany the significance test for the common 

effect size. The 95% confidence interval for summary effect is estimated as  

𝑑̅ ± 1.96 ∗ √𝑣∗ . 

Under the alternative hypothesis, the common (grand average) effect size is equal to 

a non-zero constant 𝜃𝑎. The Z test follows a non-central normal distribution Z’ with a 

non-centrality parameter 𝜆, 
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𝜆 =
𝜃𝑎

√𝑣∗
𝜃𝑎

 . 

Some conjectures are needed to approximate 𝑣∗
𝜃𝑎

.  One assumes that the sample 

sizes are equal among individual studies, following Hedges and Pigott (2001). So one 

obtains 𝑣1
∗ = 𝑣2

∗ … = 𝑣𝑖
∗ … = 𝑣𝐼

∗. The variance 𝑣∗ can be computed as: 

𝑣∗
𝜃𝑎

=
𝑣̅𝑖

∗

𝐼
 . 

Then the non-centrality parameter can be rewritten as 

𝜆 =
√𝐼𝜃𝑎

√𝑣̅𝑖
∗

 , 

where the overall variance for all studies is equal to 

𝑣̅𝑖
∗ = 𝑣̅𝑖 + 𝜏 ≈

𝑛̅1𝑖+𝑛̅2𝑖

𝑛̅1𝑖𝑛̅2𝑖
+

𝜃𝑎
2

2(𝑛̅1𝑖+𝑛̅2𝑖)
+ 𝜏 . 

The 𝜆 in the random-effects model is usually smaller, compared with the non-

centrality parameter in fixed-effects model. The ratio of 𝑣̅𝑖 (within-study variance) and 𝜏 

(between-study variance) can be denoted by 𝑝 = 𝜏/𝑣̅𝑖 . Thus the non-centrality parameter 

can be expressed in this way, 

𝜆 =
√𝐼𝜃𝑎

√𝑣̅𝑖 + 𝜏
=  

√𝐼𝜃𝑎

√𝑣̅𝑖(1 + 𝑝)
 . 

After setting up the 𝑝 ratio, lamda can be calculated in the same way as in the 

fixed-effects model. Although the random-effects model makes it easy to generalize the 

research findings to a broader context than the fixed-effects model, the fixed-effects 

meta-analysis tends to have higher power than the random-effects meta-analysis.  The 

power function for a two-sided test is the same as the fixed-effects model: 

1 − β ≈ 𝑃[|𝑍′(𝜆)| ≥ 𝑍0] 
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                                                      = 1 − Φ(𝑍0 − 𝜆) + Φ(−𝑍0 − 𝜆). 

It should be noted that Hunter and Schmidt (2000, 2004) advocate a random-

effects model, based on the belief that a fixed-effects model is often inappropriate for 

real-world data and can limit the generalizability of the findings in a meta-analysis study.  

However, they apply a slightly different analytical procedure in the meta-analysis.  They 

still use the Z statistic to test the significance of combined effects size, but they weigh the 

effect sizes by the sample sizes of the individual studies instead of the variances of the 

studies. In other words, the larger the sample size, the more weight the study will receive 

in the combined effect size estimate. 

d̅ =
∑ 𝑤𝑖

∗𝑑𝑖
𝐼
𝑖=1

∑ 𝑤𝑖
∗𝐼

𝑖=1

 , 

where 𝑤𝑖
∗ = 𝑛𝑖, and 𝑑𝑖 of each study was calculated as the above methods. In addition, 

there is a different formula to calculate the combined variance, 

𝑣∗ =
∑ 𝑤𝑖

∗[𝑑𝑖 − d̅]
2

∑ 𝑤𝑖
∗ . 

Cited by Ellis (2010, p.150), the variance term should be corrected by dividing 𝑣∗ 

by the number of studies in a meta-analysis. To calculate the test statistics, a similar 

procedure is followed to calculate the value of the Z statistic.  

Comparisons of different models and methods have been reviewed in the 

literature. For example, Field (2001) investigated the random-effects meta-analysis in 

combining correlation coefficients, and he found that Type I error for both strategies was 

not controlled for small number of studies (<15) in the heterogeneous case (population 

effect size is not fixed). The fixed-effects model caused biased results if the real data 

contained varied population effect sizes across studies (Field, 2003). Homogeneity test 
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(Q statistics) could be used for model selection, but Broenstein (2009, p. 84) suggested 

that the decision should be based on the understanding of whether or not all studies 

shared a common effect size rather than on the outcome of a statistical test. 

In this chapter I first conducted meta-analysis, using two real datasets obtained 

from an online database. Second, I used the real data sets to estimate the parameters for 

power analysis. Using the parameter estimates, I showed how to compute the statistical 

power and discuss some issues surrounding low statistical power in meta-analysis. Third, 

I described how to simulate the statistical power in meta-analysis.   

 

Challenges in Meta-analysis 

Although meta-analysis is an objective process of synthesizing studies, there are 

subjective decisions to make in the process.  The results can be biased if the following 

issues are not handled appropriately: (1) exclude relevant research; (2) include bad 

results; (3) use the inappropriate statistical models and methods; and (4) complete 

analysis with insufficient statistical power (Ellis, 2010).   

Ellis (2010) recommended that the first step in meta-analysis is to select “good” 

studies, based on the well-defined research topic. Excluding relevant research (e.g., 

publication bias) or including low quality studies may lead to biased results. However, it 

may be difficult to include studies that are not published. The quality of a study is 

sometimes difficult to judge if the information on sampling and implementation are not 

available.  

Researchers have expressed their concerns over power in meta-analysis. Cafri, 

Kromrey, and Brannick (2010) asserted that “power analysis is more important in meta-

analysis because such studies summarize similar research and influence more on theory 
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and practice.” Field (2001) investigated different meta-analytical models for correlation 

coefficient studies, and he examined the procedures that produced the most accurate and 

powerful results under different conditions. Cohen and Becker (2003) demonstrated how 

meta-analysis could increase statistical power. In their study, three indices were 

examined: standardized mean difference, Pearson’s r, and odds ratio. Statistical power 

could be increased by reducing the standard error of the weighted effect size. However, 

the number of studies would not always increase statistical power and the between-study 

variance should be considered under the random-effects model. Stern, Gavaghan and 

Egger (2000) found that power was limited in meta-analyses, based on a small number of 

individual studies. In this case, results should be interpreted with great care. Thus, 

statistical power in meta-analysis has great implications for the study result, which is the 

main focus of the current study. 

Meta-analysis Application 

The low statistical power in a meta-analysis may be due to the small number of 

studies or the low minimum detectable population effect size. To illustrate this issue, I 

will use real meta-analysis data to estimate the parameter values and assess the statistical 

power in the context.  

The first dataset came from studies on gender differences in mental rotation and 

cognitive abilities (Voyer, 2011). The previous research had well documented that men 

were better at mental rotation and cognitive abilities, as compared with women. Six 

studies were included in the meta-analysis to examine the gender differences in mental 

rotation tasks with long time limits. Table 2.1 showed the summary information of each 

study including the sample size of each group and the standardized mean difference of 



www.manaraa.com

 

36 

each group. The fixed-effects method and the two random-effects methods were used as 

introduced before in this chapter. Table 2.2 displayed the summary results of the three 

models. Three analyses indicated the same conclusion that men were better at the tasks 

than women. The Q statistics (4.23, p=.52) did not show that the heterogeneity among 

groups was statistically significant. The between-study variance was zero because Q 

statistics is smaller than the number of studies. With a large combined effect size and a 

small amount of heterogeneity, it was easy to find statistical significance even with a 

small number of individual studies. It did not matter whether the fixed-effects or random-

effects model was used. Because the between study variance was zero, the test statistics 

value is the same for both random-effects and fixed-effects models. The final results were 

basically the same across models. In other words, when the heterogeneity among groups 

was small, there were no big differences among models.  

The second dataset came from studies of children’s self-conscious emotions (Else-

Quest, Higgins, Allison & Morton, 2012). The research on gender stereotypes of emotion 

suggested that men experienced more pride than women. Table 2.3 included the summary 

information of each study including the sample size of each group and the standardized 

mean difference of each group. 

A fixed-effects model and two random-effects models were employed in the 

analysis. Table 2.4 displayed the summary information of the three models.  The two 

random-effects models produced the same conclusion that there were no gender 

differences, which was different from the conclusion from the fixed-effects model.  Even 

though the fixed-effects model result indicated statistical significance, the model may not 

be appropriate for this dataset due to the high value of Q statistic (250, p < .05) Thus, a 
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random-effects model was warranted. However, the consensus in the literature is that 

men were more prideful. In other words, the gender difference did exist, and the effect 

size was not zero. If researchers believed there was a real difference between the gender 

effects, they might attribute the lack of statistical significance in the meta-analysis to low 

statistical power. 

Most of the meta-analyses have enough statistical power but there is no guarantee 

that a meta-analysis will not lead to Type II error, just as is sometimes the case with 

individual studies (Ellis, 2010). Thus, the power investigation in meta-analysis is still 

worthwhile.    

Research Questions 

It is important to investigate the factors that influence statistical power in meta-

analysis. The current study seeks to extend the previous research to gauge the 

performance of statistical power in meta-analysis (two-group differences on continuous 

outcomes) under various conditions such as the number of studies, the sample sizes of 

individual studies, and the between-study variances. In particular, the current study will 

compare the estimated power with the simulated power, which is designed to be the 

actual power in meta-analysis. The comparison study will yield a better understanding of 

power in real meta-analyses. For instance, if there is a discrepancy between the estimated 

power and the simulated power, researchers may consider adjusting the estimation values 

to compensate for the differences between the estimated power and the real power in 

planning a meta-analysis.  

Areas in power analysis for meta-analysis to be investigated are included in the 

following:  
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1. Many meta-analyses use standardized mean difference to combine study results, 

but few simulation studies have focused on investigating the real statistical power 

based on this index.   

2. The extant literature provides the approximate formulas for computing the 

statistical power, although its accuracy has never been thoroughly vetted.  Hedges 

and Pigott (2001) showed the power functions through approximation, which is, 

averaging the variance across studies as the combined variance estimate. The 

discrepancy between estimated power and actual power is of importance.  

3. Sample sizes influence the power estimates. In meta-analysis, the sample sizes of 

small studies vary from one study to another. Sample size difference between two 

groups also influences the statistical power. Some studies included in a meta-

analysis do not have balanced designs with equal sample sizes between the two 

groups. The sample ratio between the two groups may influence the statistical 

power. Thus, the degree to which unequal sample sizes affect the statistical power 

in meta-analysis will be investigated. The other factors, such as number of studies 

and population effect size, will be included for consideration as well. Mainly, 

these factors are under the researchers’ control and are the main focus of the 

study.  

The current study is intended to simulate statistical power in meta-analyses under 

more realistic conditions. Therefore, I pose two broad research questions: 

1. Is there any discrepancy between the approximate power and the simulated power 

in fixed-effects and random-effects meta-analyses?   

2. How do unequal sample sizes across studies and unbalanced designs within a 
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study of studies affect statistical power in the fixed-effects meta-analysis and the 

random-effects meta-analysis? 

Recommendations will be given for practical researchers who are interested in 

power of meta-analysis.   
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Table 2.1 Effect Sizes and Sample Sizes of Studies for Mental Rotation Tasks  

 

Study No. Female Male D 

1 53 32 0.79 

2 117 97 0.67 

3 153 106 0.85 

4 63 43 0.68 

5 431 312 0.95 

6 29 48 0.74 

 

Table 2.2 Summary Results of Meta-analysis across Methods 

 

Methods 
Average 

Effect Size 
95%  CI 

Z statistics  

(p value) 

Fixed-effects Model .85 [.74,.96] 15.47 (p<.01) 

Random-effects Model -1 .85 [.74,.96] 15.47 (p<.01) 

Random-effects Model -2 .85 [.76,.94] 18.63(p<.01) 

 Note: Random-effects Model -1 – Hedge and Colleagues; 

           Random-effects Model -2 - Hunter & Schmidt. 

 

Table 2.3 Effect Sizes and Sample Sizes of Studies for Pride 

 

Study No. Male Female D 

1 515 308 0.44 

2 22 139 0.44 

3 30 142 -0.03 

4 39 130 0.24 

5 38 85 0.3 

6 20 73 -0.13 

7 61 29 -0.08 

8 809 1802 0.3 

9 99 285 -0.04 

10 97 192 -0.34 

11 26 72 0.44 

12 44 35 0.05 

13 814 1513 0.36 

14 129 219 0.44 

15 300 699 0.45 

16 616 1432 -0.43 

17 148 190 -0.13 

 

  



www.manaraa.com

 

41 

Table 2.4 Summary Results of Meta-analysis across Methods 

 

Methods 
Average 

Effect Size 
95%  CI 

Z statistics  

(p value) 

Fixed-effects Model .16 [.12,.20] 7.72 (p<.01) 

Random-effects Model -1 .14 [-.04,.31] 1.49 (p=.137) 

Random-effects Model -2 .15 [-.001,.31] 1.94(p=.052) 

 Note: Random-effects Model -1 – Hedge and Colleagues;  

           Random-effects Model -2 - Hunter & Schmidt. 
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CHAPTER 3 

ANALYSIS AND SIMULATION OF STATISTICAL POWER IN META-ANALYSIS 

Meta-analysis Practice 

Statistical power in meta-analysis can be computed, according to the formulas 

provided by Hedege and Pigott (2001). The following parameters influence the statistical 

power in a meta-analysis, and some of them are also relevant to a single primary study. 

1. Sample size. Unlike primary studies, there are more varying conditions in meta-

analysis. The sample size may vary from one study to another. The two groups in 

the same study may have unequal sample sizes. Balanced designs of individual 

studies also influence the estimation results. 

2. Population effect size. As in primary studies, the population effect size is 

positively related to statistical power. Standardized effect size is commonly used 

in meta-analysis to unify the measurement scale across studies.  

3. Number of small studies in a meta-analysis. Other things being equal, more 

studies are included in the meta-analysis, the higher the statistical power will be.  

4. Analytical model.  The fixed-effects model usually yields higher statistical power 

than the random-effects model.  The former model does not consider the between-

study variance. 

The power analysis for a meta-analysis parallels the issues of power analysis for a 

primary study (Borenstein, Hedges, Higgins, & Rothstein, 2010). The procedures for 

computing statistical power in meta-analysis have been described by Hedges and Pigott    
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(2001), and they found statistical power is not always high in meta-analysis. Cafri, 

Kromrey, and Brannick (2010) suggested that researchers should pay close attention to 

power at the planning phase of a meta-analysis. Liu (2013) offered an explanation of how 

to compute power in meta-analysis, using statistical software (e.g., SAS and R). 

Computation of Power in Meta-analysis 

Statistical power was calculated based on the analytical procedures in Chapter 2. 

Different parameters were used in the computation of statistical power. The average 

sample size for each group, the number of individual studies, and the population effect 

size were varied to check the effects on power. It was of interest to learn how many 

individual studies, how many samples per study, and how large of a population effect size 

were needed to achieve the desired statistical power (e.g., 80%). The R codes were 

developed to compute power under different situations (see Appendix A).  The average 

sample size n varied between 30 and 100, the number of studies I varied between 5 and 

80, and the effect size ES ranged between 0.1 and 0.8. For the random-effects model, the 

between-group variance was varied to represent small, medium, and large amounts of 

heterogeneity across studies (Hedges & Pigott, 2001). The between-study variance Tau 

square was set to .33, .67 and 1.0 times the within-study variance. These values were 

used for results illustration. After discussing the simulation procedures in the next part, 

the parameters being selected in the simulation and power computation will be discussed 

in details.  

A table and a figure (Table 3.1 and Figure 3.1) were generated to show the 

relationships between the model parameters and the sample sizes necessary to achieve the 

desired power.  
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Power Curves of different conditions were drawn in Figure 3.1. First, power 

increases with sample size and number of studies increases. A close examination reveal 

the differences in power between the fixed-effects and random-effects models through 

different line types. The previous research has frequently suggested that the fixed-effects 

model has higher statistical power than the random-effects model. This is confirmed in 

the graph. The fixed-effects model generally tends to have higher statistical power than 

the random-effects model. This is more pronounced for the random-effects model with 

elevated heterogeneity among individual studies. The population effect size was fixed as 

.1 for easy graph reading. The relationship between population effect size and power was 

illustrated in Table 3.1.  

The desired power is set to 0.80 for discussion. If there is a high population effect 

size (0.8) in the study, the lower limit computation setting (n = 30, I = 5) is enough to 

reach .8 statistical power in all models. If there is a medium population effect size 

(around 0.5) in the study, a few more studies (n=10) are needed to reach .8 in all models. 

The power can be increased by increasing the average sample size of each study as well. 

For a small population effect size (0.1 or 0.2), a larger average sample size for each group 

and a large number of studies are needed to achieve the desired power. Around 100 

subjects per study and 80 studies are required to obtain the desired power .8 when the 

population effect size is 0.1. Around 80 subjects per study and 20 studies are required to 

obtain the desired power .8 when the population effect size is 0.2. It is suggested that the 

statistical power is low when the population effect size is small for small sample sizes. In 

other words, researchers might make an incorrect decision even when there is a real 
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difference between female and male in hubristic pride (Chapter 2 example). The result 

highlights the concern over low statistical power in meta-analysis. 

Consistent with results in Figure 3.1, differences between fixed and random 

effects models were identified in Table 3.1. However, the difference in statistical power 

between the fixed-effects and random-effects models diminishes as the population effect 

size became large. For the same population effect size, large sample sizes also reduce the 

difference in power between the fixed-effects and random-effects models. In other words, 

larger parameter values help equalize the fixed-effects and random-effects models in 

statistical power. Nevertheless, researchers should be aware of the power differences in 

the two models when they select a model for the planned meta-analysis. 

These conclusions, such as the parameters that needs to reach power of .8, are 

tenable before the accuracy of statistical power was investigated.  

Simulation of Statistical Power in Meta-analysis 

Computer simulation can be used to further the understanding of statistical power in 

real meta-analysis. It can also be utilized to address the concerns over the approximate 

power. The current methodology simply assumes that each study has the same variance 

when estimating the population variance in the power formula (page 28 to page 29). The 

approximation was used to simply the power calculation process and it is seldom true in 

practice (Hedges & Pigott, 2001). Simulated power is more accurate compared with the 

analytical power. Comparing the estimated power and simulated power can help 

researchers check the accuracy of the computation findings at the beginning of this 

chapter. Also, the discrepancies between the estimated power and simulated power can 

help researchers identify the potential bias in the power formulas.   
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In the current study, I simulated the power under various conditions and then 

compared the simulated power with the approximate power based on the analytical 

formulas provided in the literature. The study was conducted using R. The following 

simulation conditions were defined based on similar studies (e.g., Field, 2003) and the 

pilot study:  

(1) Average sample size: The average sample size varied in different meta-

analysis studies. In the current study, the sample size ranged from 30 to 100 (i.e., 30, 40, 

50, 60, 80, and 100). The average sample size in the real meta-analysis is usually large 

but this study is intended to check the influence of small sample size. Thus, the sample 

size larger than 100 was not considered. In addition, large sample size normally yields 

high/ideal statistical power even when other parameter values are low. In practice, the 

sample sizes among individual studies are unequal. Therefore, a truncated binomial 

distribution was used to generate integer positive numbers to meet the requirement of 

sample size. By varying the maximum value in the distribution, the variation of sample 

size was varied. The sample size of each study was varied, based on different ratios (e.g., 

group1:group2 = 1:2). The study started with the simple situation, in which the sample 

sizes across studies were the same, and the sample sizes between the two groups in each 

study were the same. Then, the study examined the varying sample sizes between studies 

and within studies.  

(2) The following population effect sizes were used: no effect (0), a small effect 

(.1, .2, and .3), a moderate effect (.5), and a large effect (.8). These effect sizes were 

selected, based on Cohen’s guidelines (1988). Although Cohen suggested .2 as a small 

effect, .1, .2, .3 were selected as the small population effect sizes.  I chose to study more 
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on small effect sizes because they occur more often in practice. For instance, Hattie 

(2009) synthesized over 800 meta-analysis related to achievement. The overall 

distribution of all the effect sizes indicated that many of the effect sizes were small, i.e., 

under .4 (72 out of 138 studies). Therefore, the population effect size in the lower range 

will be studied more carefully.  

(3) The number of studies: the number of studies ranged from 5 to 80 (i.e., 5, 10, 

20, 50, 80). These numbers were chosen based on the real meta-analysis datasets. For 

instance, studies of children’s self-conscious emotions (Else-Quest, Higgins, Allison, and 

Morton, 2012) had different number of studies in different emotion aspects ranging from 

17 to 307. Different study numbers were used to cover most of the practical situations, 

and the number of studies higher than 80 was normally with satisfactory statistical power 

and was not included in this study.  

(4) Number of Simulations: The meta-analysis was repeated 10,000 times to 

obtain a stable simulation result. This is 10 times as many as the minimum recommended 

(Mooney, 1997). 

(5) Type I error rate was set to .05 in the current study.  

(6) The fixed-effects model and two random-effects model were considered 

separately. Random-effects model -1 used the methods developed by Hedges and 

colleagues. Whereas, the random-effects model-2 used the method developed by Hunter 

and Schmidt.  

The total simulated scenarios were based on four varying factors: 6 population 

effect sizes (0, .1, .2 .3, .5, .8), 6 average sample sizes (30, 40, 50, 60, 80, 100), 5 number 

of studies (5, 10, 20, 50, 80), 3 models (fixed-effects model, random-effects model 1, and 
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random-effects model 2). There were 36 combinations of the average sample size and 

number of studies. For each combination of the average sample size and number of 

studies, 10000 Monte Carlo trials were used. All these conditions were clearly defined as 

initial conditions accordingly. The average sample size and number of studies were 

defined into two vectors, which included all the selected conditions. Then the number of 

simulation time and alpha were fixed in the current study. The population effect size was 

defined as a single value in each simulation condition.  

#sample size 

possible.ns <- c(30,40,50,60,80,100) 

#Number of studies 

I.ns <- c(5,10,20,50,80) 

# Set Type I error rate as .05(fixed) 

alpha <- 0.05 

# number of simulation iterations(fixed) 

sims <- 10000 

#Population effect size (set as 0,.1,.2,.3,.5,.8,) 

PES <-0 

 

The simulation code was developed based on the R code for meta-analysis shown in 

Chapter 2 (see Appendix A). To run the simulation efficiently, the parameter values were 

set in the loops (average sample size and number of studies). To limit the output matrix to 

two dimensions, the population effect size was varied in different simulation runs. The 

third loop was created to repeat meta-analysis (see the abbreviated R code below).  

#loop for different average sample size 

for (j in 1:n){ 

N<- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#Simulation loop 

for (i in 1:sims){ 

} 

} 

} 
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In each simulated run, a meta-analysis was conducted. The same formula was 

applied as referring to the meta-analysis application examples in Chapter 2. The only 

difference was the generation of the effect size in primary studies. The t distribution was 

used to generate the effect size in each meta-analysis. To address the bias in Cohen’s d, 

Hedge’s g was used in power simulation to provide more accurate effect size estimates. A 

Z statistic was calculated after each repetition of the simulated meta-analysis (see the R 

code below). The fixed-effects model with equal sample size between and within studies 

was used for explanation. 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PES 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg<-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM 

 

In each meta-analysis, a p-value was saved. A statistical decision was then made 

according to the alpha level (.05). The frequency of rejecting the null hypothesis was 

saved in a 6x5 matrix for different average sample sizes and numbers of studies. They are 

the simulated statistical power across different conditions. When the population effect 

size was zero, the simulated statistical power was equal to the actual Type I error rate.  
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p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

prob[j,k] <- mean(significant.experiments) 

 

The complete R code for simulating the statistical power was included in the 

Appendix A across different conditions. The analytical power of each condition was 

saved for purpose of comparison and results illustration. The similar loops were defined 

except that no simulation loop was defined for the analytical power. Using the formula, 

analytical power across different sample size and number of studies can be calculated and 

saved in a 6*5 matrix.  

FixPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping at different sample size  

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping at different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   Vtotal<-(4/N)*(1+0.125*PES*PES) 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

} 

FixPowerFunction<-FixPowfunction(possible.ns,I.ns, PES) 

FixPowerFunction 

 

The fixed-effects model and two random-effects models were considered separately. 

Power tables and power curves under different conditions were created to illuminate the 
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results. Detail information of results organization was given at the beginning of Chapter 

4.  

The following expectations were made: 

(1) Discrepancies between analytical power and simulated power exist because the 

analytical power is based on the approximation formulas. Discrepancies under or 

around .05 are assumed to be acceptable.   

(2) Unbalanced design decreases the statistical power in meta-analysis as it does in 

the primary studies.  

(3) There is no systematic bias in estimated power, as the discrepancies can show 

underestimation and overestimation.  
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Table 3.1 Results of Power for the Fixed-effects Model and Random-effects Model 

 

 

n, I, ES 

Fixed-effects 

model 

Random-effects 

model (small 

heterogeneity) 

Random-effects 

model (medium 

heterogeneity) 

Random-effects 

model (large 

heterogeneity) 

30, 5, 0.1 .094 .083 .076 .072 

50, 5, 0.1 .124 .105 .094 .086 

40, 10, 0.1 .170 .140 .121 .109 

80, 20, 0.1 .516 .410 .340 .293 

80, 50, 0.1 .885 .782 .686 .608 

100, 80, 0.1 .994 .972 .933 .885 

30, 5, 0.2 .231 .185 .157 .139 

50, 5, 0.2 .351 .278 .231 .200 

40, 10, 0.2 .514 .409 .339 .292 

80, 20, 0.2 .979 .933 .870 .805 

30, 5, 0.3 .447 .354 .293 .253 

40, 10, 0.3 .847 .735 .636 .559 

40, 20, 0.3 .988 .955 .904 .847 

30, 5, 0.5         .854 .743 .646 .568 

30, 10, 0.5         .989 .959 .910 .854 

30, 5, 0.8 .997 .983 .954 .915 
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Figure 3.1 Power Curves under Different Parameter Values  

 

Note: Solid lines Fixed-effects model; Dashed lines Random-effects model – low 

heterogeneity; Dotted lines Random-effects model – medium heterogeneity; Dotdash 

lines Random-effects model – high heterogeneity; purple, blue, green, yellow, and red 

lines: large to small number of studies.
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CHAPTER 4  

RESULTS  

Two broad research questions were addressed in this chapter. First, the four 

different designs regarding the sample size were defined as follows: equal sample size 

and balanced design, unequal sample size and balanced design, equal sample size and 

unbalanced design, and unequal sample size and unbalanced design. The equal sample 

size referred to the same number of subjects of each individual study included in the 

meta-analysis, and the design balance indicated whether the sample sizes between the 

two groups in an individual study were equal or not. The unequal sample size across 

studies only influenced the simulated power, because analytical power only used average 

sample size across studies. To investigate the research questions, the simulated power and 

analytical power across selected conditions were generated for four designs. Power 

differences were considered for both research questions. The power curves of selected 

conditions were provided to show the results graphically.  

Type I Error Control  

The actual Type I error rate was checked through power simulation before 

investigating the research questions. Three models (i.e., fixed-effects model, random-

effects model by Hedges and Colleagues, and random-effects model by Hunter and 

Schmidt). In the null case (population effect size =0), the probability of rejecting the null 

hypothesis represented the actual Type I error rates. The four designs were checked 

accordingly. This check was necessary because the Type I error can affect Type II error 
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and, in turn, the statistical power. The results of the equal sample size and balanced 

design were shown in Table 4.1. Using a nominal alpha of .05, it was clear that Type I 

errors were under control and limited to the purported five percent for the fixed-effects 

model and the random-effects model by Hedges and colleagues (Table 4.1). In other 

words, the two models produced error rates at around .05. However, the Type I error rate 

of the random-effects by Hunter and Schmidt was not controlled properly especially for 

small number of studies in a meta-analysis. The other three designs indicated similar 

conclusions and the exact Type I error values were not shown in the results table due to 

the page limit (The R codes were included in the Appendix A). This suggested that the 

model by Hunter and Schmidt should not be used in power simulation especially for 

small number of studies. The power values generating using this method should be 

interpreted cautiously. Since the influence of statistical power on small number of studies 

was an important concern of the current study, this model was removed from the 

following analysis.   

It was known that the fixed-effects model yielded higher statistical power than the 

random-effects model (Table 3.1 and Figure 3.1).  However, when the population effect 

size varied, the random-effects model should be used to meet to model assumption even 

lower power was received. Otherwise, the actual Type I error rate was inflated.  This was 

especially so for a large sample size. Table 4.2 included the statistical power simulated in 

a fixed-effects model but with varied population effect sizes. The power was not 

accurately estimated if the fixed-effects model was used under such conditions, because 

the simulated power was based on the assigned Type I error rate (.05). Thus, model 

selection was important in statistical power for meta-analysis. In the following simulation 
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process, the population effect size across studies was fixed in the fixed-effects model. 

The population effect size of the random-effects model was assumed to follow a normal 

distribution with a mean of the average population effect size and a standard deviation of 

.1 to meet the random-effect model assumption. It was noted that different standard 

deviations were considered but the results were similar, so one setting was shown in the 

results. In addition, the simulated and analytical power used the same between-study 

variance to guarantee the comparability of simulated and analytical power. 

Table 4.3 to Table 4.10 showed the simulated power values and analytical power 

values across different population effect size, average sample size, and number of studies 

for both models under four designs.  

First, the results of balanced design and equal sample size across studies were 

shown in Table 4.3 (the fixed-effects model) and Table 4.4 (the random-effects model). 

Although this is rarely true in practice, the condition was included as a basis of the 

following analysis.  

Next, unequal sample size across studies and balanced design were considered. It 

is well-known that equal sample size across studies is an ideal condition. Usually sample 

size across studies are not equal. The truncated binomial distribution was used to generate 

the varied sample size across studies (http://www.vosesoftware.com). This guaranteed 

that the generated sample sizes were positive integer numbers with the specified mean 

and standard deviation. The maximum sample size was varied, so was the standard 

deviation of the distribution in the binomial distribution. The maximum sample size was 

changed by multiplying the average sample size by certain numbers (e.g., average sample 

size * 3). A larger maximum sample size was related to a larger variation of all the 
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sample sizes. Different maximum sample sizes were tried in the pilot run, but similar 

results were obtained. Thus, only one condition was listed here (maximum sample size = 

average sample size * 3). The sample sizes for the two groups in an individual study were 

assumed to be equal in this condition (i.e., balanced design). The results of the fixed-

effects model was shown in Table 4.5 and the results of the random-effects model was 

shown in Table 4.6.   

In practice, individual studies included in a meta-analysis rarely have perfect 

design balance. As shown in Table 2.1 and 2.3, most studies did not have exactly the 

same sample size between the two groups. Thus, the average sample size ratio between 

the two groups of all studies was set to different values. As different sample size ratios 

produced similar discrepancy, only one sample size ratio was shown in the results 

(sample size ratio: 1:2). In practice, the sample size ratio of 1:2 should be enough 

unbalanced for practical meta-analysis dataset.  Equal sample size across studies were 

assumed. Thus, the simulated power and analytical power of this design were displayed 

in Table 4.7 (the fixed-effects model) and Table 4.8 (the random-effects model).   

Finally, unequal sample size across studies and unbalanced design within studies 

were examined. This was the most practical design. The results of the fixed and random 

effects model were shown in Table 4.9 and Table 4.10.  

Discrepancy in Power Estimation 

First, the discrepancies of different conditions were checked. Overall, the 

simulated and analytical power were close to each other (<=.05) under almost all the 

conditions and all designs from Table 4.3 to Table 4.10. There were no systematic 

discrepancies between simulated power and analytical power. In other words, the 
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analytical power was overestimated or underestimated in different conditions. Statistical 

power was generally understandably higher when the population effect size, average 

sample size, and number of studies were larger. In addition, when the population effect 

size was at .8, the simulated power and analytical power estimates were close to 1 

without any discrepancy no matter what sample size, number of studies, or designs we 

had. In other words, the influence of other parameters became inconsequential under such 

conditions. However, this was not true for the average sample size or number of studies. 

The largest average sample size (100) itself cannot remove the discrepancy when the 

number of studies and population effect size were small. This is the same for the largest 

number of studies. 

Next, the different patterns in the fixed and random-effects models were 

discussed. The discrepancies between the simulated power and analytical power for the 

fixed-effects model were generally minimal under four designs. All the discrepancies 

were around or less than .01. Power curves of the fixed-effects model for the equal 

sample size and balanced design were shown in Figure 4.1. It was shown that the 

analytical power (solid lines) were close to simulated power (dashed lines) and it was 

hard to tell the difference between two groups of lines from the graph. Only one 

population effect size (i.e., 0.1) was used on the graph to show the largest discrepancies. 

Other population effect size has smaller discrepancies and the power curves under larger 

population effect were too close to each other to read from a graph. Only one graph for 

the fixed-effects model was drawn due to the similar conclusions across four designs. The 

discrepancies were larger in the random-effects models compared with the fixe-effects 

model under certain conditions when other parameters were held constant. There were 
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noticeable power discrepancies in the random-effects model under a few conditions. This 

was especially so for the unequal sample size and unbalanced design. For instance, when 

the population effect size was .3, the number of studies was 5, the average sample size 

was 60 in the design of unequal sample size and unbalanced design, the discrepancy 

between simulated power and analytical power was .059 (Table 4.10). When the 

discrepancies were large, the analytical power estimates were more likely to 

underestimate the real power. It was also more likely to occur when at least one of the 

parameters was not large enough. Interestingly, when the population effect size was not 

large enough, the discrepancies increased with the higher population effect size by fixing 

the other two parameters under certain conditions. For instance, in Table 4.10, the power 

discrepancy was .006 when the population effect size was .1 with the average sample size 

of 30 and number of studies of 5. The power discrepancies were .021, .043, and .051 

when the population effect size were .2, .3, and .5. The discrepancy disappeared when the 

population effect size was .8.  

Finally, the discrepancies of random-effects model were different for different 

designs. The discrepancies were larger for the unequal sample size and unbalanced 

design. The average discrepancy of all selected conditions for the first three designs were 

around .005, and the average discrepancy of all selections for the fourth design (i.e., 

unequal sample size and unbalanced design) was around .02. Figure 4.2 to Figure 4.5 

showed the power curves of the four designs. One population effect size (i.e., .1) was 

used to show the pattern. Figure 4.2 to Figure 4.4 showed similar discrepancy patterns 

across different conditions. However, Figure 4.5 showed that unequal sample size and 

unbalanced design had larger power discrepancies compared with the other three designs.  



www.manaraa.com

 

60 
 

It was noticed that all the discussions above were based on the power estimates 

with variations. When the parameters were large enough, power estimates were close to 

1. No discussion of power discrepancies were needed.  

Overall, the approximate analytical power was close to the real simulated power 

with acceptable discrepancies when the average sample size, population effect size, and 

number of studies were varied. Some of the conditions in the random effects models had 

noticeable power discrepancies as shown in Table 4.4, Table 4.6, Table 4.8, and Table 

4.10.  

Influence of Unequal Sample Size and Unbalanced Design on Statistical Power 

Next, influences of unequal sample sizes across studies and unbalanced design on 

statistical power were examined. Although the simulated power and analytical power 

were close to each other, the simulated power across different conditions was used for the 

analysis because it was construed as the actual power. Each condition was examined 

separately and then combined together for the final investigation. The unequal sample 

size and  

Population effect size can improve statistical power as seen from the power 

tables. Large population effect size (0.8) was not a big concern since it yielded perfect 

power estimates under various conditions. Different population effect sizes (0.1, 0.2, 0.3, 

and 0.5) were discussed. Power difference under compared conditions were used to 

investigate the influence. Population effect size of .1 with different average sample size 

and number of studies were used to generate power curves.   

First, the influence of the unequal sample size were checked. The difference of 

the fixed-effects model can be checked by comparing the power estimates from Table 4.3 



www.manaraa.com

 

61 
 

and Table 4.5. The difference of the random-effects model can be checked by comparing 

Table 4.4 and Table 4.6. The power differences were calculated and shown in Table 4.11. 

The unequal sample size did not have a systematic influence on the statistical power. 

Power values from two conditions were close to each other. When the population effect 

size was .1, the power curves of the fixed and random-effects models were drawn 

separately (Figure 4.6 and Figure 4.7). It was also hard to see the trend when all the 

power values were close to one side in the graphs, so power curves under other 

population effect sizes were not shown. Similarly as the results from the Table 4.11, the 

curves indicated that different sample size across studies did not affect the statistical 

power (solid lines and dashed lines).  

Then, the influence of unbalanced design on statistical power was investigated. It 

was known that in primary studies, the unbalanced design decreased the statistical power. 

Compared with equal sample size between groups, the unbalanced design was associated 

with lower statistical power in meta-analysis as well. The difference of the fixed-effects 

model can be checked by comparing the power estimates from Table 4.3 and Table 4.7. 

The difference of the random-effects model can be checked by comparing Table 4.4 and 

Table 4.8. The power differences were listed in Table 4.12 for both models. The power of 

unbalanced design was always lower than the power of balanced design. The largest 

difference was .057 (population effect size: .2, average sample size: 30; number of 

studies: 20). The power decreased around .04 to .05 in many cells. Interestingly, when all 

the parameters were small, the power did not decrease a lot. Instead, the large power drop 

occurred when the one of the parameters increased but not large enough to avoid the 

discrepancy. There was no power difference if the parameters were large enough to 
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generate perfect power (close to 1).  The power curves were drawn for population effect 

size .1 to show similar conclusions. Average sample size ratio of 1:2 and 1:4 were both 

included to show that power decreased with more unbalanced design. Figure 4.8 and 

Figure 4.9 indicated that higher degree of unbalanced sample size between both groups, 

design imbalance could substantially lower statistical power. The degree of decreasing 

was different under different conditions.  

Finally, the influence of both factors on statistical power were considered. The 

power differences were calculated using power estimates from Table 4.3, Table 4.4, 

Table 4.9, and Table 4.10. The results were shown in Table 4.13. The results indicated 

the power decreased under most of the conditions. Surprisingly, power estimates 

increased in the random-effects model when the number of studies was 5 and population 

effect size was .1. Again, power curves were drawn to show the results more directly. 

Figure 4.10 (fixed-effects model) and Figure 4.11 (random-effects model) indicated that 

the statistical power was decreased as studies became more unbalanced and more varied 

in sample size. 

The power curves of four designs were drawn in one paragraph to check the 

power differences at the end. Figure 4.12 (fixed-effects model) and Figure 4.13 (random-

effects model) further indicated that the solid lines (square and plus symbols for equal 

sample size and balance design and unequal sample size and balanced design) were close 

to each other, and that the dotted lines (circle and cross symbols for equal sample size 

and unbalanced design and unequal sample size and unbalanced design) were close to 

each other. Thus, the decrease of statistical power was largely due to the unbalanced 

design rather than the unequal sample size across studies. 
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As stated in the power discrepancy discussion, power estimates were close to 1 

under certain conditions (e.g., large population effect size). The discussion of unequal 

sample size across studies and unbalanced design was not necessary for those conditions.  

The study presents the results of a thorough simulation of conditions that may 

influence power of different meta-analysis methods. The analytical power were generated 

to match the conditions in the simulation. The study provided a broader insight into the 

power estimates of meta-analysis procedures. Three predictions were generally 

supported: 

(1) Discrepancies between analytical power and simulated power were identified. 

Of selected conditions, all the discrepancies in the fixe-effects model were below .05. A 

few discrepancy values in the random-effects model were above .05.    

(2) Unbalanced design decreases the statistical power, while unequal sample size 

across studies does not.  

(3) There is no systematic bias in analytical power. As shown from the power 

tables. Underestimation and overestimation were both identified. However, larger 

discrepancy in power estimates (around .05) indicated the underestimation of power.  

  



www.manaraa.com

 

64 
 

Table 4.1 Type I Error Rates of Three Models – Equal Sample size and Balanced Design 

 

Fixed-Effects Model 

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

30 .046 .048 .047 .050 .049 

40 .050 .049 .053 .050 .045 

50 .047 .046 .049 .050 .047 

60 .049 .046 .052 .047 .048 

80 .045 .045 .048 .047 .052 

100 .049 .049 .053 .050 .052 

Random-Effects Model – 1  

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

30 .041 .038 .043 .044 .047 

40 .041 .042 .046 .045 .043 

50 .045 .046 .047 .049 .052 

60 .049 .046 .049 .054 .045 

80 .050 .046 .048 .050 .049 

100 .051 .051 .053 .054 .053 

Random-Effects Model – 2 

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

30 .151 .090 .070 .057 .058 

40 .154 .091 .072 .058 .052 

50 .154 .095 .071 .059 .060 

60 .158 .095 .071 .065 .051 

80 .154 .090 .067 .058 .055 

100 .155 .096 .071 .061 .057 
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Table 4.2 Type I Error Rates of Fixed-Effects model with Varied Population Effect Sizes 

 

Population Effect Size (SD=.1) 

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

30 .058 .052 .055 .056 .057 

40 .056 .058 .058 .061 .058 

50 .063 .062 .063 .065 .066 

60 .069 .066 .066 .071 .062 

80 .074 .068 .072 .069 .072 

100 .078 .077 .079 .080 .079 

Population Effect Size (SD=.2) 

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

30 .080 .075 .079 .079 .082 

40 .087 .091 .092 .094 .088 

50 .102 .103 .105 .103 .106 

60 .122 .114 .118 .121 .109 

80 .139 .136 .136 .136 .139 

100 .161 .157 .162 .162 .161 
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Table 4.3 Statistical Power of the Fixed-effects Model (Equal Sample Size and Balanced Design) 

 

 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

         Population Effect Size = .1 

30 0.093 0.138 0.228 0.485 0.676 0.094 0.139 0.232 0.490 0.687 

40 0.108 0.169 0.281 0.609 0.799 0.109 0.170 0.293 0.608 0.807 

50 0.117 0.198 0.353 0.696 0.886 0.124 0.201 0.352 0.705 0.885 

60 0.136 0.229 0.405 0.775 0.934 0.139 0.232 0.410 0.781 0.933 

80 0.162 0.286 0.519 0.884 0.977 0.170 0.293 0.516 0.885 0.979 

100 0.196 0.347 0.601 0.941 0.994 0.201 0.352 0.608 0.942 0.994 

Population Effect Size = .2 

30 0.229 0.410 0.689 0.972 0.998 0.231 0.408 0.686 0.972 0.998 

40 0.286 0.516 0.797 0.994 1.000 0.292 0.514 0.806 0.994 1.000 

50 0.345 0.601 0.881 0.999 1.000 0.351 0.607 0.884 0.999 1.000 

60 0.411 0.689 0.933 1.000 1.000 0.408 0.686 0.933 1.000 1.000 

80 0.510 0.806 0.980 1.000 1.000 0.514 0.806 0.979 1.000 1.000 

100 0.604 0.882 0.993 1.000 1.000 0.607 0.884 0.994 1.000 1.000 

Population Effect Size = .3 

30 0.447 0.737 0.952 1.000 1.000 0.447 0.734 0.955 1.000 1.000 

40 0.556 0.854 0.987 1.000 1.000 0.560 0.847 0.988 1.000 1.000 

50 0.651 0.915 0.997 1.000 1.000 0.655 0.916 0.997 1.000 1.000 

60 0.741 0.956 0.999 1.000 1.000 0.734 0.955 0.999 1.000 1.000 

80 0.845 0.989 1.000 1.000 1.000 0.847 0.988 1.000 1.000 1.000 

100 0.915 0.997 1.000 1.000 1.000 0.916 0.997 1.000 1.000 1.000 

Population Effect Size = .5 

30 0.862 0.990 1.000 1.000 1.000 0.854 0.989 1.000 1.000 1.000 

40 0.940 0.999 1.000 1.000 1.000 0.936 0.999 1.000 1.000 1.000 
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 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

50 0.977 1.000 1.000 1.000 1.000 0.973 1.000 1.000 1.000 1.000 

60 0.989 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000 1.000 

80 0.998 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 0.998 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.4 Statistical Power of the Random-effects Model (Balanced Design and Equal Sample Size across Studies) 

 

 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

         Population Effect Size = .1 

30 .076 .116 .200 .439 .644 .083 .121 .203 .443 .638 

40 .085 .142 .236 .544 .755 .093 .146 .252 .550 .755 

50 .100 .167 .305 .632 .842 .104 .168 .300 .638 .838 

60 .118 .195 .351 .712 .887 .114 .190 .346 .711 .893 

80 .152 .237 .430 .812 .950 .135 .232 .427 .816 .952 

100 .166 .274 .504 .873 .978 .153 .274 .500 .882 .979 

Population Effect Size = .2 

30 .188 .343 .609 .954 .997 .186 .341 .612 .952 .996 

40 .234 .439 .726 .988 1.000 .228 .431 .732 .986 1.000 

50 .280 .518 .823 .997 1.000 .272 .509 .817 .996 1.000 

60 .333 .590 .877 .999 1.000 .312 .577 .877 .999 1.000 

80 .422 .701 .943 1.000 1.000 .392 .688 .944 1.000 1.000 

100 .487 .777 .975 1.000 1.000 .457 .773 .975 1.000 1.000 

Population Effect Size = .3 

30 .377 .657 .922 1.000 1.000 .356 .642 .920 1.000 1.000 

40 .462 .774 .973 1.000 1.000 .444 .763 .972 1.000 1.000 

50 .549 .852 .989 1.000 1.000 .527 .844 .990 1.000 1.000 

60 .620 .904 .996 1.000 1.000 .596 .898 .997 1.000 1.000 

80 .738 .961 .999 1.000 1.000 .714 .957 1.000 1.000 1.000 

100 .804 .981 1.000 1.000 1.000 .793 .982 1.000 1.000 1.000 

Population Effect Size = .5 

30 .780 .976 1.000 1.000 1.000 .751 .971 1.000 1.000 1.000 

40 .870 .993 1.000 1.000 1.000 .855 .993 1.000 1.000 1.000 
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 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

50 .925 .998 1.000 1.000 1.000 .920 .999 1.000 1.000 1.000 

60 .954 .999 1.000 1.000 1.000 .955 1.000 1.000 1.000 1.000 

80 .984 1.000 1.000 1.000 1.000 .987 1.000 1.000 1.000 1.000 

100 .994 1.000 1.000 1.000 1.000 .996 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .986 1.000 1.000 1.000 1.000 .986 1.000 1.000 1.000 1.000 

40 .996 1.000 1.000 1.000 1.000 .998 1.000 1.000 1.000 1.000 

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 .986 1.000 1.000 1.000 1.000 
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Table 4.5 Statistical Power of the Fixed-effects Model (Maximum sample size: Average sample size * 3) 

 

 

 

Average 

Sample Size 

Number of Studies 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

         Population Effect Size = .1 

30 .096 .133 .227 .478 .676 .094 .139 .232 .490 .687 

40 .104 .168 .294 .606 .805 .109 .170 .293 .608 .807 

50 .120 .196 .348 .699 .885 .124 .201 .352 .705 .885 

60 .142 .223 .418 .775 .929 .139 .232 .410 .781 .933 

80 .165 .292 .510 .884 .978 .170 .293 .516 .885 .979 

100 .197 .344 .603 .941 .993 .201 .352 .608 .942 .994 

Population Effect Size = .2 

30 .225 .403 .682 .970 .999 .231 .408 .686 .972 .998 

40 .289 .499 .804 .993 1.000 .292 .514 .806 .994 1.000 

50 .351 .618 .885 .998 1.000 .351 .607 .884 .999 1.000 

60 .416 .677 .933 1.000 1.000 .408 .686 .933 1.000 1.000 

80 .505 .809 .978 1.000 1.000 .514 .806 .979 1.000 1.000 

100 .601 .879 .993 1.000 1.000 .607 .884 .994 1.000 1.000 

Population Effect Size = .3 

30 .445 .737 .952 1.000 1.000 .447 .734 .955 1.000 1.000 

40 .557 .840 .989 1.000 1.000 .560 .847 .988 1.000 1.000 

50 .646 .916 .997 1.000 1.000 .655 .916 .997 1.000 1.000 

60 .738 .956 .999 1.000 1.000 .734 .955 .999 1.000 1.000 

80 .845 .988 1.000 1.000 1.000 .847 .988 1.000 1.000 1.000 

100 .916 .997 1.000 1.000 1.000 .916 .997 1.000 1.000 1.000 

Population Effect Size = .5 

30 .863 .991 1.000 1.000 1.000 .854 .989 1.000 1.000 1.000 

40 .931 .999 1.000 1.000 1.000 .936 .999 1.000 1.000 1.000 
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Average 

Sample Size 

Number of Studies 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

50 .975 1.000 1.000 1.000 1.000 .973 1.000 1.000 1.000 1.000 

60 .990 1.000 1.000 1.000 1.000 .989 1.000 1.000 1.000 1.000 

80 .998 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .997 1.000 1.000 1.000 1.000 .997 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.6 Statistical Power of the Random-effects Model (Maximum sample size: Average sample size * 3) 

 

 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .077 .112 .189 .432 .628 .083 .122 .203 .443 .638 

40 .085 .143 .244 .547 .755 .093 .145 .252 .549 .757 

50 .098 .169 .295 .643 .834 .104 .167 .300 .637 .837 

60 .119 .188 .343 .710 .894 .114 .190 .346 .710 .893 

80 .138 .240 .428 .813 .951 .133 .233 .427 .816 .953 

100 .169 .285 .502 .880 .977 .152 .274 .499 .882 .979 

Population Effect Size = .2 

30 .189 .348 .611 .956 .995 .186 .343 .612 .953 .996 

40 .237 .437 .728 .984 1.000 .228 .429 .733 .986 1.000 

50 .286 .521 .821 .996 1.000 .271 .507 .818 .996 1.000 

60 .334 .582 .877 .999 1.000 .311 .578 .877 .999 1.000 

80 .414 .692 .942 1.000 1.000 .388 .690 .944 1.000 1.000 

100 .482 .776 .974 1.000 1.000 .455 .774 .975 1.000 1.000 

Population Effect Size = .3 

30 .372 .655 .921 1.000 1.000 .356 .643 .920 1.000 1.000 

40 .460 .773 .972 1.000 1.000 .443 .760 .972 1.000 1.000 

50 .535 .853 .991 1.000 1.000 .525 .842 .990 1.000 1.000 

60 .618 .900 .997 1.000 1.000 .594 .898 .997 1.000 1.000 

80 .725 .957 .999 1.000 1.000 .708 .957 1.000 1.000 1.000 

100 .802 .981 1.000 1.000 1.000 .790 .982 1.000 1.000 1.000 

Population Effect Size = .5 

30 .773 .974 1.000 1.000 1.000 .751 .971 1.000 1.000 1.000 

40 .864 .993 1.000 1.000 1.000 .854 .993 1.000 1.000 1.000 
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 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

50 .922 .998 1.000 1.000 1.000 .919 .998 1.000 1.000 1.000 

60 .951 .999 1.000 1.000 1.000 .954 1.000 1.000 1.000 1.000 

80 .982 1.000 1.000 1.000 1.000 .986 1.000 1.000 1.000 1.000 

100 .993 1.000 1.000 1.000 1.000 .996 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .987 1.000 1.000 1.000 1.000 .986 1.000 1.000 1.000 1.000 

40 .995 1.000 1.000 1.000 1.000 .998 1.000 1.000 1.000 1.000 

50 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.7 Statistical Power of the Fixed-effects Model (Average sample size ratio: 1:2)  

 

 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .089 .126 .207 .439 .624 .089 .129 .211 .446 .636 

40 .101 .157 .255 .556 .751 .102 .156 .266 .559 .760 

50 .109 .180 .319 .646 .850 .116 .184 .319 .654 .846 

60 .125 .210 .367 .726 .905 .129 .211 .372 .733 .904 

80 .148 .258 .473 .844 .963 .156 .266 .470 .846 .965 

100 .179 .316 .551 .911 .987 .184 .319 .559 .915 .988 

Population Effect Size = .2 

30 .208 .370 .632 .953 .995 .211 .371 .635 .954 .996 

40 .259 .470 .751 .987 1.000 .265 .469 .758 .988 1.000 

50 .312 .550 .837 .997 1.000 .319 .557 .845 .997 1.000 

60 .371 .638 .908 1.000 1.000 .371 .635 .903 .999 1.000 

80 .464 .761 .965 1.000 1.000 .469 .758 .964 1.000 1.000 

100 .555 .844 .986 1.000 1.000 .557 .845 .988 1.000 1.000 

Population Effect Size = .3 

30 .406 .687 .925 1.000 1.000 .407 .684 .932 1.000 1.000 

40 .510 .808 .975 1.000 1.000 .512 .804 .978 1.000 1.000 

50 .599 .883 .993 1.000 1.000 .605 .882 .994 1.000 1.000 

60 .688 .930 .998 1.000 1.000 .684 .932 .998 1.000 1.000 

80 .800 .981 1.000 1.000 1.000 .804 .978 1.000 1.000 1.000 

100 .882 .993 1.000 1.000 1.000 .882 .994 1.000 1.000 1.000 

Population Effect Size = .5 

30 .818 .982 1.000 1.000 1.000 .813 .981 1.000 1.000 1.000 

40 .913 .997 1.000 1.000 1.000 .908 .996 1.000 1.000 1.000 
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 Number of Studies 

 

Average 

Sample Size 

Power Simulation  Power Function 

5 10 20 50 80 5 10 20 50 80 

50 .961 1.000 1.000 1.000 1.000 .957 .999 1.000 1.000 1.000 

60 .983 1.000 1.000 1.000 1.000 .981 1.000 1.000 1.000 1.000 

80 .996 1.000 1.000 1.000 1.000 .996 1.000 1.000 1.000 1.000 

100 .999 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .995 1.000 1.000 1.000 1.000 .994 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.8 Statistical Power of the Random-effects Model (Average sample size ratio: 1:2) 

 

 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .072 .106 .182 .398 .594 .079 .114 .186 .404 .590 

40 .079 .130 .215 .499 .712 .089 .135 .231 .505 .708 

50 .091 .155 .279 .586 .799 .098 .156 .274 .591 .797 

60 .109 .178 .317 .668 .855 .107 .176 .316 .664 .859 

80 .141 .215 .394 .769 .930 .126 .214 .392 .775 .932 

100 .155 .249 .467 .839 .965 .143 .252 .462 .849 .967 

Population Effect Size = .2 

30 .173 .309 .565 .931 .992 .171 .311 .565 .929 .992 

40 .212 .399 .673 .978 .999 .209 .394 .685 .976 .999 

50 .254 .473 .783 .994 1.000 .249 .467 .774 .992 1.000 

60 .300 .545 .842 .998 1.000 .286 .533 .841 .998 1.000 

80 .387 .657 .921 1.000 1.000 .359 .643 .921 1.000 1.000 

100 .445 .738 .962 1.000 1.000 .421 .731 .961 1.000 1.000 

Population Effect Size = .3 

30 .341 .603 .891 .999 1.000 .324 .593 .889 .999 1.000 

40 .420 .729 .958 1.000 1.000 .405 .716 .955 1.000 1.000 

50 .505 .817 .983 1.000 1.000 .484 .803 .982 1.000 1.000 

60 .576 .874 .994 1.000 1.000 .550 .865 .993 1.000 1.000 

80 .695 .943 .999 1.000 1.000 .669 .936 .999 1.000 1.000 

100 .768 .971 1.000 1.000 1.000 .751 .971 1.000 1.000 1.000 

Population Effect Size = .5 

30 .736 .962 1.000 1.000 1.000 .703 .954 1.000 1.000 1.000 

40 .834 .988 1.000 1.000 1.000 .814 .988 1.000 1.000 1.000 
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 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

50 .898 .995 1.000 1.000 1.000 .890 .997 1.000 1.000 1.000 

60 .936 .999 1.000 1.000 1.000 .934 .999 1.000 1.000 1.000 

80 .975 1.000 1.000 1.000 1.000 .978 1.000 1.000 1.000 1.000 

100 .991 1.000 1.000 1.000 1.000 .992 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .978 1.000 1.000 1.000 1.000 .977 1.000 1.000 1.000 1.000 

40 .993 1.000 1.000 1.000 1.000 .995 1.000 1.000 1.000 1.000 

50 .998 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

60 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.9 Statistical Power of the Fixed-effects Model (Average sample size ratio – 1:2; Maximum sample size: Average sample size * 

3) 

 

 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .090 .124 .208 .436 .625 .089 .129 .211 .446 .636 

40 .097 .154 .266 .555 .757 .102 .156 .266 .559 .760 

50 .112 .178 .314 .641 .847 .116 .184 .319 .654 .846 

60 .132 .203 .381 .726 .898 .129 .211 .372 .733 .904 

80 .151 .266 .467 .846 .965 .156 .266 .470 .846 .965 

100 .182 .309 .550 .912 .986 .184 .319 .559 .915 .988 

Population Effect Size = .2 

30 .208 .365 .632 .951 .996 .211 .371 .635 .954 .996 

40 .263 .456 .756 .986 1.000 .265 .469 .758 .988 1.000 

50 .318 .566 .845 .997 1.000 .319 .557 .845 .997 1.000 

60 .377 .629 .901 .999 1.000 .371 .635 .903 .999 1.000 

80 .462 .758 .963 1.000 1.000 .469 .758 .964 1.000 1.000 

100 .550 .839 .987 1.000 1.000 .557 .845 .988 1.000 1.000 

Population Effect Size = .3 

30 .401 .687 .928 1.000 1.000 .407 .684 .932 1.000 1.000 

40 .513 .794 .979 1.000 1.000 .512 .804 .978 1.000 1.000 

50 .597 .884 .993 1.000 1.000 .605 .882 .994 1.000 1.000 

60 .689 .930 .998 1.000 1.000 .684 .932 .998 1.000 1.000 

80 .798 .980 1.000 1.000 1.000 .804 .978 1.000 1.000 1.000 

100 .881 .993 1.000 1.000 1.000 .882 .994 1.000 1.000 1.000 

Population Effect Size = .5 

30 .819 .984 1.000 1.000 1.000 .813 .981 1.000 1.000 1.000 
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 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

40 .903 .997 1.000 1.000 1.000 .908 .996 1.000 1.000 1.000 

50 .958 1.000 1.000 1.000 1.000 .957 .999 1.000 1.000 1.000 

60 .982 1.000 1.000 1.000 1.000 .981 1.000 1.000 1.000 1.000 

80 .997 1.000 1.000 1.000 1.000 .996 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .994 1.000 1.000 1.000 1.000 .994 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.10 Statistical Power of the Random-effects Model (Average sample size ratio – 1:2; Maximum sample size: Average sample 

size * 3) 

 

 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .084 .115 .184 .405 .591 .078 .111 .179 .384 .561 

40 .090 .141 .235 .513 .716 .087 .131 .221 .479 .679 

50 .105 .167 .278 .603 .795 .096 .150 .262 .562 .766 

60 .124 .184 .326 .671 .864 .105 .170 .301 .634 .832 

80 .142 .231 .404 .776 .932 .122 .206 .373 .746 .913 

100 .170 .275 .476 .852 .965 .138 .242 .439 .823 .955 

Population Effect Size = .2 

30 .187 .331 .578 .936 .990 .166 .301 .543 .914 .988 

40 .234 .416 .692 .976 .999 .203 .377 .662 .968 .998 

50 .280 .496 .787 .992 1.000 .241 .448 .752 .988 1.000 

60 .324 .554 .847 .998 1.000 .276 .514 .820 .996 1.000 

80 .398 .662 .924 .999 1.000 .344 .623 .905 1.000 1.000 

100 .460 .747 .962 1.000 1.000 .405 .710 .951 1.000 1.000 

Population Effect Size = .3 

30 .357 .623 .897 1.000 1.000 .314 .577 .873 .999 1.000 

40 .442 .742 .958 1.000 1.000 .392 .694 .945 1.000 1.000 

50 .510 .821 .986 1.000 1.000 .467 .782 .977 1.000 1.000 

60 .592 .871 .994 1.000 1.000 .533 .848 .991 1.000 1.000 

80 .696 .941 .998 1.000 1.000 .645 .926 .998 1.000 1.000 

100 .776 .972 1.000 1.000 1.000 .732 .965 1.000 1.000 1.000 

Population Effect Size = .5 

30 .739 .963 1.000 1.000 1.000 .688 .947 .999 1.000 1.000 
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 Number of Studies 

Average 

Sample Size 
Power Simulation Power Function 

5 10 20 50 80 5 10 20 50 80 

40 .837 .988 1.000 1.000 1.000 .800 .984 1.000 1.000 1.000 

50 .899 .996 1.000 1.000 1.000 .877 .995 1.000 1.000 1.000 

60 .935 .999 1.000 1.000 1.000 .924 .999 1.000 1.000 1.000 

80 .975 1.000 1.000 1.000 1.000 .972 1.000 1.000 1.000 1.000 

100 .989 1.000 1.000 1.000 1.000 .990 1.000 1.000 1.000 1.000 

Population Effect Size = .8 

30 .973 1.000 1.000 1.000 1.000 .973 1.000 1.000 1.000 1.000 

40 .994 1.000 1.000 1.000 1.000 .994 1.000 1.000 1.000 1.000 

50 .999 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4.11 Power Difference between Equal Sample size and Unequal Sample Size  

 

 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random-effects Model 

5 10 20 50 80 5 10 20 50 80 

         Population Effect Size = .1 

30 -.003 .005 .001 .007 0 .001 -.004 -.011 -.007 -.016 

40 .004 .001 -.013 .003 -.006 0 .001 .008 .003 0 

50 -.003 .002 .005 -.003 .001 -.002 .002 -.01 .011 -.008 

60 -.006 .006 -.013 0 .005 .001 -.007 -.008 -.002 .007 

80 -.003 -.006 .009 0 -.001 -.014 .003 -.002 .001 .001 

100 -.001 .003 -.002 0 .001 .003 .011 -.002 .007 -.001 

Population Effect Size = .2 

30 .004 .007 .007 .002 -.001 .001 .005 .002 .002 -.002 

40 -.003 .017 -.007 .001 0 .003 -.002 .002 -.004 0 

50 -.006 -.017 -.004 .001 0 .006 .003 -.002 -.001 0 

60 -.005 .012 0 0 0 .001 -.008 0 0 0 

80 .005 -.003 .002 0 0 -.008 -.009 -.001 0 0 

100 .003 .003 0 0 0 -.005 -.001 -.001 0 0 

Population Effect Size = .3 

30 .002 0 0 0 0 -.005 -.002 -.001 0 0 

40 -.001 .014 -.002 0 0 -.002 -.001 -.001 0 0 

50 .005 -.001 0 0 0 -.014 .001 .002 0 0 

60 .003 0 0 0 0 -.002 -.004 .001 0 0 

80 0 .001 0 0 0 -.013 -.004 0 0 0 

100 -.001 0 0 0 0 -.002 0 0 0 0 

Population Effect Size = .5 

30 -.001 -.001 0 0 0 -.007 -.002 0 0 0 

40 .009 0 0 0 0 -.006 0 0 0 0 
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 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random-effects Model 

5 10 20 50 80 5 10 20 50 80 

50 .002 0 0 0 0 -.003 0 0 0 0 

60 -.001 0 0 0 0 -.003 0 0 0 0 

80 0 0 0 0 0 -.002 0 0 0 0 

100 0 0 0 0 0 -.001 0 0 0 0 
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Table 4.12 Power Difference between Balanced Design and Unbalanced Design 

 

 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random effects Model 

5 10 20 50 80 5 10 20 50 80 

         Population Effect Size = .1 

30 .004 .012 .021 .046 .052 .004 .01 .018 .041 .05 

40 .007 .012 .026 .053 .048 .006 .012 .021 .045 .043 

50 .008 .018 .034 .050 .036 .009 .012 .026 .046 .043 

60 .011 .019 .038 .049 .029 .009 .017 .034 .044 .032 

80 .014 .028 .046 .04 .014 .011 .022 .036 .043 .02 

100 .017 .031 .050 .03 .007 .011 .025 .037 .034 .013 

Population Effect Size = .2 

30 .021 .040 .057 .019 .003 .015 .034 .044 .023 .005 

40 .027 .046 .046 .007 0 .022 .04 .053 .01 .001 

50 .033 .051 .044 .002 0 .026 .045 .04 .003 0 

60 .04 .051 .025 0 0 .033 .045 .035 .001 0 

80 .046 .045 .015 0 0 .035 .044 .022 0 0 

100 .049 .038 .007 0 0 .042 .039 .013 0 0 

Population Effect Size = .3 

30 .041 .05 .027 0 0 .036 .054 .031 .001 0 

40 .046 .046 .012 0 0 .042 .045 .015 0 0 

50 .052 .032 .004 0 0 .044 .035 .006 0 0 

60 .053 .026 .001 0 0 .044 .03 .002 0 0 

80 .045 .008 0 0 0 .043 .018 0 0 0 

100 .033 .004 0 0 0 .036 .01 0 0 0 

Population Effect Size = .5 

30 .044 .008 0 0 0 .044 .014 0 0 0 

40 .027 .002 0 0 0 .036 .005 0 0 0 
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 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random effects Model 

5 10 20 50 80 5 10 20 50 80 

50 .016 0 0 0 0 .027 .003 0 0 0 

60 .006 0 0 0 0 .018 0 0 0 0 

80 .002 0 0 0 0 .009 0 0 0 0 

100 .001 0 0 0 0 .003 0 0 0 0 
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Table 4.13 Power Difference between Equal Sample Size, Balanced Design and Unequal Sample Size, Unbalanced Design 

 

 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random effects Model 

5 10 20 50 80 5 10 20 50 80 

Population Effect Size = .1 

30 .003 .014 .02 .049 .051 -.008 .001 .016 .034 .053 

40 .011 .015 .015 .054 .042 -.005 .001 .001 .031 .039 

50 .005 .02 .039 .055 .039 -.005 0 .027 .029 .047 

60 .004 .026 .024 .049 .036 -.006 .011 .025 .041 .023 

80 .011 .02 .052 .038 .012 .01 .006 .026 .036 .018 

100 .014 .038 .051 .029 .008 -.004 -.001 .028 .021 .013 

Population Effect Size = .2 

30 .021 .045 .057 .021 .002 .001 .012 .031 .018 .007 

40 .023 .06 .041 .008 0 0 .023 .034 .012 .001 

50 .027 .035 .036 .002 0 0 .022 .036 .005 0 

60 .034 .06 .032 .001 0 .009 .036 .03 .001 0 

80 .048 .048 .017 0 0 .024 .039 .019 .001 0 

100 .054 .043 .006 0 0 .027 .03 .013 0 0 

Population Effect Size = .3 

30 .046 .05 .024 0 0 .02 .034 .025 0 0 

40 .043 .06 .008 0 0 .02 .032 .015 0 0 

50 .054 .031 .004 0 0 .039 .031 .003 0 0 

60 .052 .026 .001 0 0 .028 .033 .002 0 0 

80 .047 .009 0 0 0 .042 .02 .001 0 0 

100 .034 .004 0 0 0 .028 .009 0 0 0 

Population Effect Size = .5 

30 .043 .006 0 0 0 .041 .013 0 0 0 

40 .037 .002 0 0 0 .033 .005 0 0 0 
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 Number of Studies 

 

Average 

Sample Size 

Fixed-effects Model Random effects Model 

5 10 20 50 80 5 10 20 50 80 

50 .019 0 0 0 0 .026 .002 0 0 0 

60 .007 0 0 0 0 .019 0 0 0 0 

80 .001 0 0 0 0 .009 0 0 0 0 

100 0 0 0 0 0 .005 0 0 0 0 
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Figure 4.1 Power curves by sample size and number of studies (fixed-effects model equal 

sample size and balanced design)  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; solid lines: 

analytical power; dashed lines: simulated power; population effect size .1. 
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Figure 4.2 Power curves by sample size and number of studies (random-effects model 

equal sample size and balanced design)  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; dashed lines: 

simulated power; solid lines: analytical power; population effect size .1. 
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Figure 4.3 Power curves by sample size and number of studies (random-effects model 

unequal sample size and balanced design)  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; dashed lines: 

simulated power; solid lines: analytical power; population effect size .1. 
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Figure 4.4 Power curves by sample size and number of studies (random-effects model 

equal sample size and unbalanced design)  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; dashed lines: 

simulated power; solid lines: analytical power; population effect size .1. 
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Figure 4.5 Power curves by sample size and number of studies (random-effects model 

unequal sample size and unbalanced design)  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; dashed lines: 

simulated power; solid lines: analytical power; population effect size .1. 
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Figure 4.6 Power curves of the fixed-effects model 

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size – solid lines vs unequal sample size across studies – dotted lines; population effect 

size .1. 
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Figure 4.7 Power curves of the random-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size – solid lines vs unequal sample size across studies – dotted Lines; population effect 

size .1. 
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Figure 4.8 Power curves of the fixed-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; balanced 

design – solid lines; average sample size ratio: 1:2 – dashed lines; average sample size 

ratio: 1:4 – dotted lines; population effect size .1. 
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Figure 4.9 Power curves of the random-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size – solid lines; average sample size ratio: 1:2 – dashed lines; average sample size ratio: 

1:4 – dotted lines; population effect size .1. 
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Figure 4.10 Power curves of the fixed-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size – solid lines vs unequal sample size across studies and unbalanced design – dotted 

lines; population effect size .1. 
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Figure 4.11 Power curves of the random-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size – solid lines vs unequal sample size across studies and unbalanced design – dotted 

lines; population effect size .1. 
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Figure 4.12 Power curves of the fixed-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size and balanced design, unequal sample size across studies and balanced design – solid 

lines; equal sample across studies and unbalanced design, unequal sample size across 

studies and unbalanced design – dotted lines); population effect size .1. 
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Figure 4.13 Power curves of the random-effects model  

 

Note: purple, blue, green, yellow, and red: large to small number of studies; equal sample 

size and balanced design, unequal sample size across studies and balanced design – solid 

lines; equal sample across studies and balanced design, unequal sample size across 

studies and unbalanced design – dotted lines); population effect size .1.



www.manaraa.com

 

101 

CHAPTER 5  

CONCLUSION 

Meta-analysis has been used to synthesize research results of similar nature for 

several decades. There has been an increasing interest in using meta-analysis because it 

enables researchers to reconcile inconsistent findings from small studies on the same 

topic and reach a definitive answer to the research question of interest.  The meta-

analysis can overcome the limitation of small studies, which often lack sufficient 

statistical power. 

There exists some literature on statistical power in meta-analysis. Problems with 

statistical power in meta-analysis have been addressed by researchers (e.g., Stern, 

Gavaghan & Egger, 2000). The current study investigated the discrepancy between the 

simulated power and analytical approximate power for the Hedge’s g (corrected from 

Cohen’s effect size d) under various conditions (i.e., varying average sample size, 

number of studies, and population effect size), using both the fixed and random-effects 

models. The influence of unequal sample size across studies and unbalanced design 

within studies on statistical power was analyzed and examined. The findings can 

potentially inform educational researchers about the actual statistical power in a planned 

meta-analysis.  

The potential factors that influence statistical power are model selection, 

population effect size, number of involved studies, sample sizes of the studies, and design 

balance of those studies. The current study produced new findings about meta-analysis 
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and statistical power. A few findings not directly related to the research questions are 

briefly discussed as these may be useful information for researchers.  

(1) The Hunter-Schmidt method manages Type I error poorly when the number of 

studies in the meta-analysis is small. This does not appear surprising because the method 

weighs the effect size by the number of studies. The smaller number of studies make it 

difficult to correctly reject the null hypothesis. 

(2) When the population effect sizes greatly vary, the random-effect model should 

be used. Otherwise, the Type I error rate will not be controlled properly. This is 

especially true when there is a large amount of variation in the effect sizes among studies. 

Selecting an appropriate model is critical for the correct estimation of power in a meta-

analysis.   

(3) In the pilot run, Hedge’s g does help decreasing the difference between the 

simulated power and the analytical power under certain conditions compared with the 

Cohen’s d. Thus, Hedge’s g was selected as the effect size index. However, the simulated 

power between Cohen’s d and Hedge’s g is similar overall. It does not influence the main 

conclusions of the current study.   

(4) The power discrepancies between simulated and analytical power in the fixed-

effects model were minimal (.01 or below). Thus, the power formulas for the fixed 

effects model should be able to provide accurate estimates. However, the simulated 

power and analytical power may show noticeable discrepancies in certain selected 

conditions in the random-effects model. Certain adjustment can be made to address the 

discrepancy (i.e., employ power simulation). In the random-effects model, the power 

discrepancy is negligible when the power is high enough under certain conditions.  
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 (5) The unbalanced design does influence the statistical power in meta-analysis 

as it does in a primary single study. This is more pronounced with high design imbalance 

than with low design imbalance. The latter case only shows minor change in statistical 

power, compared with that of balanced design. The influence of unequal sample size 

across studies is minimal.  

There are other considerations when planning a meta-analysis. The first is to 

decide whether effect sizes should be treated as fixed or random.  

First, researchers need to choose a fixed-effects model or random-effects model 

for the meta-analysis. The literature review reveals that the random-effects models have 

become increasingly popular recently (Hall & Brannick, 2002). As cited by Field (2001), 

it is more likely to have datasets with varied effect sizes across studies. The assumption 

of fixed population effect size is tenable only when researchers do not intend to 

generalize the results beyond the datasets. For example, the researchers include most of 

the representative datasets in their meta-analysis, and they do not need to generalize the 

results. Researchers may choose a fixed-effects model or random-effects model by 

calculating the Q statistics, which can be used as a reference to decide if the population 

effect sizes are fixed across studies, but it should be considered in conjunction with other 

criteria, such as the generalizability of the meta-analysis results. Researchers could opt to 

conduct power analysis, using both fixed and random-effects model. By doing so, they 

can make an informed decision if they are not sure about heterogeneity of the dataset. 

Secondly, researchers need to collect and estimate the parameter values necessary 

for power analysis, after deciding the appropriate statistical model. The average sample 

size of the individual studies and the number of studies are easy to estimate, as long as 
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researchers have access to the original datasets. As mentioned in the introduction, one 

difficulty in power analysis is the correct estimation of the population effect size. In 

theory, researchers cannot obtain 100% accurate population effect size, but a relatively 

accurate estimate can be obtained. There are reference books and research articles on 

different research topics. They often report the effect sizes from the previous research.  

For example, Hattie (2009) synthesized over 800 meta-analysis studies related to student 

achievements of various kinds. The effect sizes on different outcomes were obtained and 

discussed in detail. The effect sizes in the relevant literature varied greatly, ranging from 

negative values to large positive values. If researchers are interested in achievement 

related studies, Hattie’s book offers a good resource to estimate the population effect size 

from related studies. Estimating the population effect size from the dataset researchers 

analyze is not a good practice. An alternative way is to report the confidence interval of 

the effect size estimates from the dataset. The upper and lower bound can be used to 

calculate the statistical power. After all the parameters are estimated, power analysis can 

be performed, according to the formulas in Chapter 2.  

When conducting power analysis, researchers can consider varying population 

effect size, number of studies, and average sample size. Low statistical power in meta-

analysis exists when all the parameters are small as shown in the power tables in Chapter 

3 and Chapter 4. They also need to consider the influence of unbalanced design on 

statistical power by calculating the average sample size ratio between two groups. More 

unbalanced design will lead to lower statistical power. The following recommendations 

were made. If researchers are certain about the large population effect size in a meta-

analysis project (.8 or above), researchers are likely to attain sufficient statistical power 
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no matter what other parameters they have in their studies. They do not need to consider 

the probability of making Type II errors. Low statistical power may be a concern when 

the population effect size is .5 or below. Only one design – unequal sample size across 

studies and unbalanced design – was considered, because this design was mostly close 

the real situation. The following table included the settings that are needed to achieve 

power of .8, which is the general cut-off score of ideal power. The recommendations are 

rough numbers based on the selected conditions in the current study. The analytical 

power and simulated power generally indicated similar conclusions due to the minimal 

discrepancies (Table 5.1). Values lower than 30 indicated that 30 was large enough to 

receive power .8; values higher than 100 indicated that 100 was not large enough to 

receive power .8. Slightly larger sample size is needed for the random-effects model 

under certain conditions (e.g., population effect size: .5 and number of studies: 5). 

Admittedly, these were not exactly the same conditions as what we have in practice. The 

developed simulation code can be employed to analyze statistical power in meta-analysis 

for different parameter values, varying degree of design balance and unequal sample 

sizes.  

It should be noted that the current study does not include all possible scenarios in 

terms of average sample size, number of studies, or population effect size. However, this 

limitation can be easily overcome by initiating a simulation study that incorporates any 

new considerations. As demonstrated in the current study, simulation has proved to be a 

very efficient way to study and understand the performance of statistical power in a real 

meta-analysis.   
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The effect sizes are generated from the t distribution. The assumption of t 

distribution may not be holding true for small sample size under 30 in small studies. 

Thus, the results of average sample size of fewer than 30 were not considered in the 

current study. However, studies with unequal sample size may still have studies with 

lower sample size. More simulation studies are needed to understand the effect sizes that 

have other distribution properties. In addition, the current study uses an average sample 

size ratio between the two groups for design balance. In reality, the sample size ratio 

between the two groups can vary from one individual study to another. This situation can 

be examined in future simulation studies. Future studies in this area can extend to new 

possible study configurations as they arise from a meta-analysis. The developed R code 

can be adapted to accommodate those new considerations. Another practical thing is to 

develop a SAS macro that can simulate and calculate statistical power. Practical 

researchers can assign parameters and receive two power estimates simultaneously.   

It is hoped that the current study helps to motivate further research aiming at 

examining statistical power in more complicated meta-analyses. Given the urge for meta-

analysis in social science research, the current study essentially offers a stepping stone for 

more advanced analysis. Further research can examine statistical power in testing 

moderator effects and publication bias effect in meta-analysis. For example, there are 

differences in math achievement between female and male students, but such differences 

may depend on the grade levels. The moderating effect of grade level on gender 

difference can be of great interest, and so is the statistical power for testing the 

moderating effect.  Analyzing power for testing a moderating effect can lead to a new 

line of research in this area.  Another promising area will be the power for testing 
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publication bias in meta-analysis, which refers to the fact that studies with significant 

results are more likely to be published. This issue often surfaces in meta-analyses.  

  



www.manaraa.com

 

108 

Table 5.1 Sample Size Needed to Receive Power of .8   

 

Fixed-Effects Model 

Population 

Effect Size 

Number of Studies 

5 10 20 50 80 

0.5 30 < 30 < 30 < 30 < 30 

0.3 80 40 < 30 < 30 < 30 

0.2 > 100 100 50 < 30 < 30 

0.1 > 100 > 100 > 100 80 50 

Random-Effects Model  

Average 

Sample Size 

Number of Studies 

5 10 20 50 80 

0.5 40 < 30 < 30 < 30 < 30 

0.3 > 100 50 < 30 < 30 < 30 

0.2 > 100 > 100 60 < 30 < 30 

0.1 > 100 > 100 > 100 100 60 
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APPENDIX A  

 R CODE 

Basic Power Simulation (Chapter 2) 

 
PopulationEffect<-0.2 

SD<-1 

Simultime<-1000 

Samplesize<-100 

pv<-rep(NA,Simultime) 

for (i in 1: Simultime) 

{print (i) 

SimuValues<-rnorm(Samplesize, PopulationEffect, SD) 

 pv[i]<-t.test(SimuValues,alternative= "two.sided",  

mu=0)$p.value 

} 

mean(pv<.05) 

 

Meta-analysis Application (Chapter 3) 

# Read in the dataset 

Mydata<-read.csv("DIRECTORY OF THE FILE",header=TRUE) 

Fnumber<-Mydata[,1] 

Mnumber<-Mydata[,2] 

ES<- Mydata[,3] 

NumberStudy<-6 

 

# Meta-analysis in the fixed-effects model 

Variancewithin<-

((Fnumber+Mnumber)/(Fnumber*Mnumber))+((ES*ES*.5)/(Fnumber+

Mnumber)) 

Weight<-1/Variancewithin 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM
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p.value<- 2*pnorm(-abs(Zstat)) 

Upper<- WeightedD+1.96* SEM 

Lower<- WeightedD-1.96* SEM 

 

# Meta-analysis in the random-effects model-HP 

Qstat<- SumWdsquare-(SumWd* SumWd)/SumWeight 

Qstat<-10 

Cstat<-SumWeight-( SumWsquare/ SumWeight) 

df<- NumberStudy -1 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 

BetweenStudyVariance<-rep(Tsquare, NumberStudy) 

VarianceTotal<- BetweenStudyVariance+ Variancewithin 

WeightRandom<- 1/ VarianceTotal 

SumWeightRandom<-sum(WeightRandom) 

SumWeightRandomd<-sum(WeightRandom*ES) 

WeightdRandom<- SumWeightRandomd/SumWeightRandom 

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom 

p.valueRandom<- 2*pnorm(-abs(ZstatRandom)) 

UpperRandom<- WeightdRandom+1.96* SEMRandom 

LowerRandom<- WeightdRandom-1.96* SEMRandom 

 

# Meta-analysis in the random-effects model-HS 

WeightRandomHS<- Fnumber+Mnumber 

SumWeightRandomHS<-sum(WeightRandomHS) 

SumWeightRandomdHS<-sum(WeightRandomHS*ES) 

WeightdRandomHS<- SumWeightRandomdHS/ SumWeightRandomHS 

WeightdRandomHSmatrix<- rep(WeightdRandomHS, NumberStudy)  

NomiVariance<-sum((WeightRandomHS)*(ES-

WeightdRandomHSmatrix)* (ES- WeightdRandomHSmatrix)) 

DenomiVariance<- SumWeightRandomHS 

VarianceHS<-(NomiVariance/ DenomiVariance)/NumberStudy 

SEMRandomHS<-sqrt(VarianceHS)  

ZstatRandomHS<- WeightdRandomHS/SEMRandomHS 

p.valueRandomHS<- 2*pnorm(-abs(ZstatRandomHS)) 

UpperRandomHS<- WeightdRandomHS +1.96* SEMRandomHS 

LowerRandomHS<- WeightdRandomHS - 1.96* SEMRandomHS 

 

# Power Functions 

# Define number of studies, population effect size and 

sample size  

 

#Fixed-effects model  

 Fix=function(N1, N2, NumberStudy, PES)  

{  

Vtotal<- (N1+ N2)/( N1* N2)+.5* PES^2/( N1+ N2) 

   lamda<-sqrt(NumberStudy)* PES/ sqrt(Vtotal)  
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   power<-pnorm(lamda-qnorm(1-.05/2))+pnorm(qnorm(.05/2)-

lamda) 

 return(power) 

} 

 

#Random-effects model (Tau square) 

RandomTsquare=function(N1, N2, NumberStudy, PES)  

{  

Vtotal<- (N1+ N2)/( N1* N2)+.5* PES^2/(N1+ N2)+Tsquare 

   lamda<-sqrt(NumberStudy)*PES/sqrt(Vtotal)  

   power<-pnorm(lamda-qnorm(1-.05/2))+   

pnorm(qnorm(.05/2)-lamda) 

return(power) 

} 

 

#Random-effects model (Ratio)  

#Define it as the ratio of within group variance and 

between group variance  

#Define it as small & medium & large(.33, .67, 1.0)  

   p<-c(1.33,1.67,2) 

   RandomRatio=function (N1, N2, NumberStudy,PES,p)  

   {  

 Vtotal<- ((N1+ N2)/( N1* N2)+.5* PES^2/( N1+ N2))*p 

    lamda<-sqrt(NumberStudy)* PES/ sqrt(Vtotal)  

    power<-pnorm(lamda-qnorm(1-.05/2))+  

pnorm(qnorm(.05/2)-lamda) 

return(power) 

} 

 

 

Simulation and Analytical Power – Equal Sample Size and Balanced Design 

rm(list=ls()) 

#Define all the parameters. Same for all designs 

#sample size 

possible.ns <- c(30,40,50,60,80,100) 

#Number of studies 

I.ns <- c(5,10,20,50,80) 

# Set Type I error rate as .05(fixed) 

alpha <- 0.05 

# number of simulation iterations(fixed) 

sims <- 10000 

#Population effect size (set as 0,.1,.2,.3,.5,.8) 

PES <-0.1 

 

 

Fixed-Effects Model 
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#Define the seed to receive the same results in each run 

set.seed(1000) 

#################################################### 

main<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#looping at different average sample size  

for (j in 1:n){ 

N<- possible.ns[j] 

#looping at different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#Simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PES 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg<-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= 
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alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

} 

} 

out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

FIX<-main(possible.ns,I.ns,PES,sims,alpha) 

FIX 

 

#Power function 

FixPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping at different sample size  

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping at different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   Vtotal<-(4/N)*(1+0.125*PES*PES) 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

} 

FixPowerFunction<-FixPowfunction(possible.ns,I.ns, PES) 

FixPowerFunction 

 

 

Random-effects Model 

#Hedges & Colleagues Method 

 

set.seed(1000) 

########################################################### 

Random_1<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 
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# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# Set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

Tsquare_ave<- array(rep(NA,n*s),dim=c(n,s)) 

Tsquare.array<-as.numeric(rep(NA,sims)) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

# Simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

# Vary the population effect size of each study to meet the 

random-effects model assumption 

PESVARY<-rnorm(I,PES,0.1) 

ES<- g + PESVARY 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg<-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

SumWdsquare<-sum(Weight*ES*ES) 

SumWsquare<-sum(Weight*Weight) 

Qstat<- SumWdsquare-(SumWd*SumWd)/SumWeight 

Cstat<-SumWeight-(SumWsquare/SumWeight) 

df<- I -1 

#Use if function to define Tsquare (Between-study variance) 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 
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if(Qstat-df>0){Tsquare.array[i]<-(Qstat-df)/Cstat} else 

{Tsquare.array[i]<-0} 

BetweenStudyVariance<-rep(Tsquare,I) 

VarianceTotal<- BetweenStudyVariance+ Varianceg 

WeightRandom<- 1/VarianceTotal 

SumWeightRandom<-sum(WeightRandom) 

SumWeightRandomd<-sum(WeightRandom*ES) 

WeightdRandom<- SumWeightRandomd/SumWeightRandom 

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandom)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

Tsquare_ave[j,k]<- mean(Tsquare.array) 

} 

} 

out <- list(prob,Tsquare_ave) 

names(out) <- c("Real Type I error rate & Power","average T 

square") 

out 

} 

Random_HP<- Random_1(possible.ns,I.ns,PES,sims,alpha) 

Random_HP[[1]] 

 

#Hunter&Schmidt Method 

 

set.seed (1000) 

########################################################### 

Random_2<-function(possible.ns, I.ns, PES, sim, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 
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for (j in 1:n){ 

N <- possible.ns[j] 

#looping for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

# Vary the population effect size of each study to meet the 

random-effects model assumption 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PESVARY 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

WeightRandomHS<- Nvary 

SumWeightRandomHS<-sum(WeightRandomHS) 

SumWeightRandomdHS<-sum(WeightRandomHS*ES) 

WeightdRandomHS<- SumWeightRandomdHS/SumWeightRandomHS 

WeightdRandomHSmatrix<-rep(WeightdRandomHS,I)  

NomiVariance<-sum((WeightRandomHS)*(ES-

WeightdRandomHSmatrix)* (ES- WeightdRandomHSmatrix)) 

DenomiVariance<-SumWeightRandomHS 

VarianceHS<-(NomiVariance/DenomiVariance)/I 

SEMRandomHS<-sqrt(VarianceHS)  

ZstatRandomHS<- WeightdRandomHS/SEMRandomHS 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandomHS)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

 

} 

} 

   out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 
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Random_HS<- Random_2(possible.ns,I.ns,PES,sims,alpha) 

Random_HS[[1]] 

 

#Power function  

AveTsquare<-Random_HP[[2]] 

RandomPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping at different sample size 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping at different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   Variancewithin<-(4/N)*(1+0.125*PES*PES) 

   Tsquare<- AveTsquare[j,k] 

   Vtotal<-Variancewithin+Tsquare 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

}  

RandomPowerFunction<-

RandomPowfunction(possible.ns,I.ns,PES) 

RandomPowerFunction 

 

Simulation and Analytical Power – Unequal Sample Size and Balanced Design 

Fixed-effects Model 

set.seed(1000) 

########################################################### 

main<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 
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# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N<- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

#Simulate the sample size (Nvary) 

Nvary<-rbinom(I, MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PES 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg<-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight* ES) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM 

#Return the p values of all simulations 
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#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

} 

} 

out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

FIX<-main(possible.ns,I.ns,PES,sims,alpha) 

FIX 

 

# Power function 

 

FixPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power<- array(rep(NA,n*s),dim=c(n,s)) 

   #loop for different average sample size 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #loop for different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   Vtotal<-(4/N)*(1+0.125*PES*PES) 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

} 

FixPowerFunction<-FixPowfunction(possible.ns,I.ns, PES) 

FixPowerFunction 

 

Random-effects Model  

 

#Hedges & Colleagues Method 
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set.seed(1000) 

########################################################### 

Random_1<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

Tsquare_ave<- array(rep(NA,n*s),dim=c(n,s)) 

Tsquare.array<-as.numeric(rep(NA,sims)) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop  

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

Nvary<-rbinom(I, MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

# Vary the population effect size of each study to meet the 

random-effects model assumption 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 
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g<- d0*J 

ES<-g+ PESVARY  

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg<-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

SumWdsquare<-sum(Weight*ES*ES) 

SumWsquare<-sum(Weight*Weight) 

Qstat<- SumWdsquare-(SumWd*SumWd)/SumWeight 

Cstat<-SumWeight-(SumWsquare/SumWeight) 

df<- I -1 

#Use if function to define Tsquare(between-study variance) 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 

if(Qstat-df>0){Tsquare.array[i]<-(Qstat-df)/Cstat} else 

{Tsquare.array[i]<-0} 

BetweenStudyVariance<-rep(Tsquare,I) 

VarianceTotal<- BetweenStudyVariance+ Varianceg 

WeightRandom<- 1/VarianceTotal 

SumWeightRandom<-sum(WeightRandom) 

SumWeightRandomd<-sum(WeightRandom*ES) 

WeightdRandom<- SumWeightRandomd/SumWeightRandom 

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandom)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

Tsquare_ave[j,k]<- mean(Tsquare.array) 

} 

} 

   out <- list(prob,Tsquare_ave) 

names(out) <- c("Real Type I error rate & Power","average T 

square") 

out 

} 

Random_HP<- Random_1(possible.ns,I.ns,PES,sims,alpha) 

Random_HP[[1]] 

 

#Hunter&Schmidt Method 

set.seed (1000) 
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########################################################### 

Random_2<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

 

# set the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

Nvary<-rbinom(I, MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Sample size between two groups in each study are equal 

d0 <- rt(I,Nvary-2)*2*sqrt(1/Nvary) 

# Vary the population effect size of each study to meet the 

random-effects model assumption 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<-g+ PESVARY  

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  
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WeightRandomHS<- Nvary 

SumWeightRandomHS<-sum(WeightRandomHS) 

SumWeightRandomdHS<-sum(WeightRandomHS*ES) 

WeightdRandomHS<- SumWeightRandomdHS/SumWeightRandomHS 

WeightdRandomHSmatrix<-rep(WeightdRandomHS,I)  

NomiVariance<-sum((WeightRandomHS)*(ES-

WeightdRandomHSmatrix)* (ES- WeightdRandomHSmatrix)) 

DenomiVariance<-SumWeightRandomHS 

VarianceHS<-(NomiVariance/DenomiVariance)/I 

SEMRandomHS<-sqrt(VarianceHS)  

ZstatRandomHS<- WeightdRandomHS/SEMRandomHS 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandomHS)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

 

} 

} 

   out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

 

Random_HS<- Random_2(possible.ns,I.ns,PES,sims,alpha) 

Random_HS[[1]] 

 

#Power function  

AveTsquare<-Random_HP[[2]] 

RandomPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #added here for looping at number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   Variancewithin<-(4/N)*(1+0.125*PES*PES) 
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   Tsquare<- AveTsquare[j,k] 

   Vtotal<-Variancewithin+Tsquare 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

}  

RandomPowerFunction<-

RandomPowfunction(possible.ns,I.ns,PES) 

RandomPowerFunction 

 

Simulated and Analytical Power – Equal Sample Size and Unbalanced Design 

Fixed-effects Model 

set.seed (1000) 

########################################################### 

main<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N<- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0<-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 
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J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PES 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-Nvary/(N1*N2)+(ES*ES*0.5)/Nvary 

Varianceg <-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight* ES) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<-WeightedD/SEM 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

} 

} 

out <- list(prob) 

names(out) <- c("Real Type I error rate & power") 

out 

} 

FIX<-main(possible.ns,I.ns,PES,sims,alpha) 

FIX 

 

 

# Power function 

 

FixPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping for different average sample size 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping for different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

N1<-N*(1/3) 
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N2<-N*(2/3) 

Vtotal<-N/(N1*N2)+ (PES*PES*0.5)/N 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

} 

FixPowerFunction<-FixPowfunction(possible.ns,I.ns, PES) 

FixPowerFunction 

 

 

Random-effects Model  

 

#Hedges & Colleagues Method 

 

set.seed (1000) 

########################################################### 

Random_1<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

#set the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

Tsquare_ave<- array(rep(NA,n*s),dim=c(n,s)) 

Tsquare.array<-as.numeric(rep(NA,sims)) 

p.value<-as.numeric(rep(NA,sims)) 

 

#loop for different average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#loop for different number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 
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# Sample size between two groups in each study are equal 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0 <-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 

# Vary the population effect size of each study to meet the 

random-effect model assumption 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PESVARY 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-Nvary/(N1*N2)+ (ES*ES*0.5)/Nvary 

Varianceg <-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight*ES) 

SumWdsquare<-sum(Weight*ES*ES) 

SumWsquare<-sum(Weight*Weight) 

Qstat<- SumWdsquare-(SumWd*SumWd)/SumWeight 

Cstat<-SumWeight-(SumWsquare/SumWeight) 

df<- I -1 

#Use if function to define Tsquare 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 

if(Qstat-df>0){Tsquare.array[i]<-(Qstat-df)/Cstat} else 

{Tsquare.array[i]<-0} 

BetweenStudyVariance<-rep(Tsquare,I) 

VarianceTotal<- BetweenStudyVariance+Varianceg 

WeightRandom<- 1/VarianceTotal 

SumWeightRandom<-sum(WeightRandom) 

SumWeightRandomd<-sum(WeightRandom*ES) 

WeightdRandom<- SumWeightRandomd/SumWeightRandom 

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandom)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

Tsquare_ave[j,k]<- mean(Tsquare.array) 

} 

} 
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   out <- list(prob,Tsquare_ave) 

names(out) <- c("Real Type I error rate & Power","average T 

square") 

out 

} 

Random_HP<- Random_1(possible.ns,I.ns,PES,sims,alpha) 

Random_HP[[1]] 

 

 

# Hunter & Schimt Method 

 

set.seed (1000) 

########################################################### 

Random_2<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

#set the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#looping for the average sample size  

for (j in 1:n){ 

N <- possible.ns[j] 

#looping for the number of studies  

for (k in 1:s){ 

I<- I.ns[k] 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Sample size across studies equal in this condition 

Nvary<-rep(N,I) 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0 <-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 

# Vary the population effect size of each study to meet the 

random-effect model assumption 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PESVARY 
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#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

WeightRandomHS<- Nvary 

SumWeightRandomHS<-sum(WeightRandomHS) 

SumWeightRandomdHS<-sum(WeightRandomHS*ES) 

WeightdRandomHS<- SumWeightRandomdHS/SumWeightRandomHS 

WeightdRandomHSmatrix<-rep(WeightdRandomHS,I)  

NomiVariance<-sum((WeightRandomHS)*(ES-

WeightdRandomHSmatrix)* (ES- WeightdRandomHSmatrix)) 

DenomiVariance<-SumWeightRandomHS 

VarianceHS<-(NomiVariance/DenomiVariance)/I 

SEMRandomHS<-sqrt(VarianceHS)  

ZstatRandomHS<- WeightdRandomHS/SEMRandomHS 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandomHS)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

 

} 

} 

   out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

 

Random_HS<- Random_2(possible.ns,I.ns,PES,sims,alpha) 

Random_HS[[1]] 

 

 

#Power function  

AveTsquare<-Random_HP[[2]] 

RandomPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping for the average sample size  

   for (j in 1:n){ 

   N <- possible.ns[j] 
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   #looping for different number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   N1<-N*(1/3) 

   N2<-N*(2/3) 

   Variancewithin<-N/(N1*N2)+ (PES*PES*0.5)/N 

   Tsquare<- AveTsquare[j,k] 

   Vtotal<-Variancewithin+Tsquare 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

}  

RandomPowerFunction<-

RandomPowfunction(possible.ns,I.ns,PES) 

RandomPowerFunction 

 

 

Simulated and Analytical Power – Unequal Sample Size and Unbalanced Design 

Fixed-effects Model 

set.seed (1000) 

########################################################### 

main<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 

 

# set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

pvalue.array<-array(0,dim=c(sims,n,s)) 

p.value<-as.numeric(rep(NA,sims)) 

 

#looping for the average sample size 

for (j in 1:n){ 

N<- possible.ns[j] 

#looping for the number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop 
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for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

Nvary<-rbinom(I, MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0 <-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PES 

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-Nvary/(N1*N2)+ (ES*ES*0.5)/Nvary 

Varianceg <-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 

SumWd<-sum(Weight* ES) 

SumWdsquare<-sum(Weight*ES*ES) 

SumWsquare<-sum(Weight*Weight) 

WeightedD<- SumWd/SumWeight 

SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

} 

} 

out <- list(prob) 



www.manaraa.com

 

136 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

FIX<-main(possible.ns,I.ns,PES,sims,alpha) 

FIX[[1]] 

 

# Power function 

 

FixPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping for the average sample size 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping for the number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   N1<-N*(1/3) 

   N2<-N*(2/3) 

   Vtotal<-N/(N1*N2)+ (PES*PES*0.5)/N 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 

} 

} 

   return(powerround) 

} 

FixPowerFunction<-FixPowfunction(possible.ns,I.ns, PES) 

FixPowerFunction 

 

 

Random-effects Model  

#Hedges & Colleagues Method 

 

set.seed (1000) 

########################################################### 

Random_1<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 
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s <- length(I.ns) 

 

#set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

Tsquare_ave<- array(rep(NA,n*s),dim=c(n,s)) 

Tsquare.array<-as.numeric(rep(NA,sims)) 

p.value<-as.numeric(rep(NA,sims)) 

 

#looping for the average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#looping for the number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

#simulation loop 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

Nvary<-rbinom(I, MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0 <-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PESVARY  

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

Variancewithin<-(4/Nvary)*(1+0.125*ES*ES) 

Varianceg <-J*J*Variancewithin 

Weight<-1/Varianceg 

SumWeight<-sum(Weight) 
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SumWd<-sum(Weight*ES) 

SumWdsquare<-sum(Weight*ES*ES) 

SumWsquare<-sum(Weight*Weight) 

Qstat<- SumWdsquare-(SumWd*SumWd)/SumWeight 

Cstat<-SumWeight-(SumWsquare/SumWeight) 

df<- I -1 

#Use if function to define Tsquare 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 

if(Qstat-df>0){Tsquare.array[i]<-(Qstat-df)/Cstat} else 

{Tsquare.array[i]<-0} 

BetweenStudyVariance<-rep(Tsquare,I) 

VarianceTotal<- BetweenStudyVariance+ Varianceg 

WeightRandom<- 1/VarianceTotal 

SumWeightRandom<-sum(WeightRandom) 

SumWeightRandomd<-sum(WeightRandom*ES) 

WeightdRandom<- SumWeightRandomd/SumWeightRandom 

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandom)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

Tsquare_ave[j,k]<- mean(Tsquare.array) 

} 

} 

   out <- list(prob,Tsquare_ave) 

names(out) <- c("Real Type I error rate & Power","average T 

square") 

out 

} 

Random_HP<- Random_1(possible.ns,I.ns,PES,sims,alpha) 

Random_HP[[1]] 

 

#Hunter&Schmit Method 

set.seed (1000) 

########################################################### 

Random_2<-function(possible.ns, I.ns, PES, sims, alpha) 

{ 

# number of sample size vector 

n <- length(possible.ns) 

# number of studies vector 

s <- length(I.ns) 
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#set up the output 

prob <- array(rep(NA,n*s),dim=c(n,s)) 

significant.experiments <- rep(NA, sims) 

p.value<-as.numeric(rep(NA,sims)) 

 

#looping for the average sample size 

for (j in 1:n){ 

N <- possible.ns[j] 

#looping for the number of studies 

for (k in 1:s){ 

I<- I.ns[k] 

for (i in 1:sims){ 

# In each simulation, perform the meta-analysis 

# Use the truncated binomial distribution to simulate 

sample size 

try<-function(p,m,c){ 

   (p/(1-(1-p)^c) - m/c )^2} 

#Can vary the maximum value (standard deviation varies) 

MaxN<-N*3 

#Get the p.value (0 point) 

p.to.use<-

optimize(try,interval=c(0.0001,0.9999),m=N,c=MaxN)$minimum 

Nvary<-rbinom(I,MaxN,p.to.use) 

nb<-sum(Nvary ==0) 

while (nb>0){ 

Nvary [Nvary ==0]<-rbinom(nb,maxss,p.to.use) 

nb<-sum(Nvary ==0)} 

# Simulate the effect size using t distribution 

# Vary the sample size within each study 

N1<-Nvary*(1/3) 

N2<-Nvary*(2/3) 

d0 <-rt(I,Nvary-2)*sqrt(1/N1+1/N2) 

PESVARY<-rnorm(I,PES,0.1) 

J<-1-(3/(4*(Nvary-2)-1)) 

g<- d0*J 

ES<- g + PESVARY  

#Calculate the Z-test statistics - get combined effect size 

and variance of all studies  

WeightRandomHS<- Nvary 

SumWeightRandomHS<-sum(WeightRandomHS) 

SumWeightRandomdHS<-sum(WeightRandomHS*ES) 

WeightdRandomHS<- SumWeightRandomdHS/SumWeightRandomHS 

WeightdRandomHSmatrix<-rep(WeightdRandomHS,I)  

NomiVariance<-sum((WeightRandomHS)*(ES-

WeightdRandomHSmatrix)* (ES- WeightdRandomHSmatrix)) 

DenomiVariance<-SumWeightRandomHS 

VarianceHS<-(NomiVariance/DenomiVariance)/I 
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SEMRandomHS<-sqrt(VarianceHS)  

ZstatRandomHS<- WeightdRandomHS/SEMRandomHS 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis) 

p.value[i]<- 2*pnorm(-abs(ZstatRandomHS)) 

significant.experiments[i] <- ifelse(p.value[i] <= 

alpha,1,0) 

} 

prob[j,k] <- mean(significant.experiments) 

 

} 

} 

   out <- list(prob) 

names(out) <- c("Real Type I error rate & Power") 

out 

} 

 

Random_HS<- Random_2(possible.ns,I.ns,PES,sims,alpha) 

Random_HS[[1]] 

 

 

#Power function  

AveTsquare<-Random_HP[[2]] 

RandomPowfunction<-function(possible.ns, I.ns, PES)  

{  

# number of sample size vector 

   n <- length(possible.ns) 

   # number of studies vector 

   s <- length(I.ns) 

   power <- array(rep(NA,n*s),dim=c(n,s)) 

   #looping for the average sample size 

   for (j in 1:n){ 

   N <- possible.ns[j] 

   #looping for the number of studies 

   for (k in 1:s){ 

   I<- I.ns[k] 

   N1<-N*(1/3) 

   N2<-N*(2/3) 

   Variancewithin<-N/(N1*N2)+(PES*PES*0.5)/N 

   Tsquare<- AveTsquare[j,k] 

   Vtotal<-Variancewithin+Tsquare 

   lamda<-sqrt(I)*PES/sqrt(Vtotal)  

   power[j,k]<-pnorm(lamda-qnorm(1-

0.05/2))+pnorm(qnorm(0.05/2)-lamda) 

   powerround<-round(power, digits=4) 
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} 

} 

   return(powerround) 

}  

RandomPowerFunction<-

RandomPowfunction(possible.ns,I.ns,PES) 

RandomPowerFunction 

 

Graph Functions 

#Graph Function(Power Curve) 

plotfun<-

function(mat,sampnvec,studynvec,lwdo=1,ltyo=1,newo=F){ 

#Use lwd=2 in the plot statement for wider lines (or other 

numbers) 

#Use lty=2 in the plot statement for dashed lines (or other 

numbers) 

#mat is the output called FIX/Random_HP 

#sampnvec is the possible.ns - assumes these are sorted 

correctly already and match rows of FIX/Random_HP 

#studynvec is the I.ns - assumes these are sorted correctly 

already and match FIX/Random_HP 

#rows are average sample size 

#columns are number of studies 

#with different curves for each number of studies 

nsamp<-nrow(mat) 

nstudies<-ncol(mat) 

colorvec<-rainbow(nstudies) 

par(new=newo) 

plot(sampnvec,mat[,1],col=colorvec[1],type="l", 

       xlim=c(min(sampnvec),max(sampnvec)),ylim=c(0,1), 

       xlab="Sample Size",ylab="Power",lwd=lwdo,lty=ltyo, 

main="Power by Sample Size and Number of Studies") 

for (j in 2:nstudies){ 

   par(new=T) 

   plot(sampnvec,mat[,j],col=colorvec[j],type="l", 

       xlim=c(min(sampnvec),max(sampnvec)),ylim=c(0,1), 

       xlab="Sample Size",ylab="Power",lwd=lwdo,lty=ltyo, 

main="Power by Sample Size and Number of Studies") 

} 

} 

#Perform the plotfun multiple times and use newo=T to add 

new curves 

#Use symbolvec to define different symbols on the power 

curves.  
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